In triangle ABC, angle B=90• if tanA=1/√3 then show that sinA. cosC+cosA.sinC=1
Answers
Answered by
5
Answer:
Sins, Triangle of ABC whose angle B=90° and
TanA=1/√3
Therefore, TanA=1/√3=BC/AB. [From to angle A]
Therefore,Let, BC=k and AB=√3k
According to pithagoraous rule,
AC²=AB²+BC²
»AC²=(√3k)²+(k)²
»AC²=3k²+k²
»AC²=4k²
Therefore,AC=2k
And sinA=BC/AC=k/2k=1/2
cosA=AB/AC=√3k/2k=√3/2
sinC=AB/AC=√3k/2k=√3/2
cosC=BC/AC=k/2k=1/2
:. sinA.cosC+cosA.sinC
=1/2×1/2+√3/2×√3/2
=1/4+3/4
=1+3/4
=4/4
=1. [proved]
Similar questions