Math, asked by dheetrisharoy0, 27 days ago

In triangle ABC, angle B= 90°, AB = (2x+1) cm and BC= (x+1) cm, If the area of the triangle ABC is 60 cm, find its perimeter​

Attachments:

Answers

Answered by itzgeniusgirl
11

given :-

In triangle ABC, angle B= 90°, AB = (2x+1) cm and BC= (x+1) cm, If the area of the triangle ABC is 60 cm

to find :-

• perimeter

formula :-

\dashrightarrow\sf \: area \:  =  \frac{1}{2}  \times base \times height \:

solution :-

\dashrightarrow\sf \:  \frac{1}{2} (x + 1)(2x + 1)

\dashrightarrow\sf \:  \frac{1}{2} (2x^{2} + 3x + 1)

given that area = 60cm²

so,

\dashrightarrow\sf \:  \frac{1}{2} (2x^{2}  + 3x + 1) = 60

\dashrightarrow\sf \: 2x^{2}  + 3x + 1 = 120

\dashrightarrow\sf \: 2x^{2}  + 3x - 119 = 0

so,

\dashrightarrow\sf \: x =  \frac{ - 3 +  \sqrt{3^{2}  - 4(2)( - 119)} }{2^{(2)} }

\dashrightarrow\sf \:  \frac{ - 3 + 31}{4}

\dashrightarrow\sf \: 7( - 3( \frac{4}{4}x)

\dashrightarrow\sf \: 7

so perimeter = AB + BC + CA

\dashrightarrow\sf \: ca =  \sqrt{ab^{2} + bc^{2} }

\dashrightarrow\sf \: ab = 2(7) + 1 = 15

\dashrightarrow\sf \: bc = 7 + 1 = 8

\dashrightarrow\sf \: ca =  \sqrt{15^{2} + 8^{2}  }

\dashrightarrow\sf \: 17

\dashrightarrow\sf \: perimeter = 15 + 8 + 17

\dashrightarrow\sf \:  = 40cm \:

so therefore perimeter = 40cm

so therefore our required answer is 40cm.

Attachments:
Similar questions