In triangle ABC, angle C=90, then tan A+ tan B=
Answers
Answered by
0
Answer:
The triangle is an obtuse angled triangle.
We know,
tan(A+B+C)=tanA+tanB+tanC−tanAtanBtanC1−tanAtanB−tanAtanC−tanBtanCtan(A+B+C)=tanA+tanB+tanC−tanAtanBtanC1−tanAtanB−tanAtanC−tanBtanC
A+B+C=πA+B+C=π
⟹tan(A+B+C)=0⟹tan(A+B+C)=0
⟹tanA+tanB+tanC=tanAtanBtanC⟹tanA+tanB+tanC=tanAtanBtanC
⟹tanAtanBtanC<0⟹tanAtanBtanC<0
Now we know that the tantan function is negative in the second quadrant, so for the above condition to be satisfied there has to be one angle >90o>90o. Hence we can conclude that the triangle is an obtuse one.
Similar questions