In triangle ABC , angleA =60 .prove that BC2= AB2 + AC2-AB.AC
Please answer
Answers
so it may be be equilateral triangle
so all sides are equal.
let the side be X
bc2= ab2 + ac2 - ab
X2= X2 + X2 - x
0=0
Answer:
Given data:
In ∆ABC,
Angle A = 60°
To prove: BC²= AB2 + AC² - AB.AC
Proof:
Let’s draw a line from C to AB meeting at D such that CD is perpendicular to AB.
In ∆CBD, using the Pythagoras theorem, we have
BC² = CD² + BD²
⇒ CD² = BC² - BD²…… (i)
Also,
In ∆CAD, using the Pythagoras theorem, we have
AC² = CD² + AD²
⇒ CD² = AC² - AD² …… (ii)
Equating (i) & (ii), we get
BC² - BD² = AC² - AD²
⇒ BC² = AC² - AD² + BD²
⇒ BC² = AC² - AD² + (AB - AD)²
⇒ BC² = AC²- AD² + AB² – 2*AB*AD + AD²
⇒ BC² = AC² + AB² – 2*AB*AD …… (iii)
Now, in ∆CAD, using the trigonometry property of triangles, we get
cos 60° = AD / AC
⇒ ½ = AD / AC
⇒ AD = ½ * AC ….. (iv)
Thus,
On substituting (ii) in (i), we get
BC² = AC² + AB² – (2 * AB * ½ * AC)
⇒ BC² = AB² + AC² – AB * AC
Hence proved