in triangle abc anglea:angleb:angle c=1:2:3 then find bc:ab:ac
Answers
Answer:
1:2:√3
Step-by-step explanation:
Given--->in ΔABC
-----------
∠A:∠B:∠C = 1:2:3
To find--->
-----------
BC:AB:AC=?
Solution---->
--------------
∠A:∠B:∠C=1:2:3
let ∠A=x ,∠B=2x,∠C=3x
sum of angles of triangle are equal to 180⁰
so ∠A+∠B+∠C=180⁰
=> x +2 x +3x =180⁰
=> 6x =180⁰
180⁰
=> x=-------------
3
=> x =30⁰
so ∠A =x=30⁰
∠B=2x=2(30⁰)=60⁰
∠C=3x=3(30⁰)=90⁰
now we have sine rule
a b c
--------- = ----------=-----------
sinA sinB sinc
BC AC AB
---------= -----------=-----------
Sin30⁰ sin60⁰ sin90⁰
BC:AC:AB=sin30*:sin60*:sin90*
BC:AB:AC=sin30*:sin90*:sin60*
1 √3
BC:AB:AC= ------ : 1 : ------
2 2
multiplying ratios by 2
1 √3
BC:AB:AC=2×------: 2×1 :2×------
2 2
= 1 : 2 : √3
Hope it helps u
Thanks