Math, asked by adawadi1750, 1 year ago

In triangle ABC, angleB = 90°, BE is the perpendicular bisector of AC then (ar BEC)/(ar ABC) =
(a) 1/2
(b) 2/1
(c) 4/1
(d) 1/4

Answers

Answered by SerenaBochenek
8

Answer:

option (a) is correct.

Step-by-step explanation:

Given triangle ABC, ∠B = 90°, BE is the perpendicular bisector of AC. we have to find the value of \frac{ar(BEC)}{ar(ABC)}

In ΔBEA and ΔBEC

AE=EC        (∵given)

∠AEB=∠CEB     (∵given)

BE=BE           (∵common)

By SAS rule, ΔBEA≅ΔBEC

As congruent triangles have equal area ∴ ar(BEA)=ar(BEC)

Now, ar(ABC)=ar(BEA)+ar(BEC)

                     =ar(BEA)+ar(BEA)

     ar(ABC)=2ar(BEA)

⇒  \frac{ar(BEC)}{ar(ABC)}=\frac{1}{2}

Hence, option (a) is correct.

Attachments:
Answered by DelcieRiveria
1

Answer:

The correct option is (a).

Step-by-step explanation:

It is given that BE is the perpendicular bisector of AC. It means BE divides the line AC is 2 equal parts.

Area of a triangle is

A=\frac{1}{2}\times base \times height

The area of triangle BEC is

Area(BEC)=\frac{1}{2}\times BE\times CE

The area of triangle ABC is

Area(ABC)=\frac{1}{2}\times BE\times AC

Area(ABC)=\frac{1}{2}\times BE\times (2CE)

Area(ABC)=2[\frac{1}{2}\times BE\times (2CE)]

Area(ABC)=2Area(BEC)

\frac{Area(BEC)}{Area(ABC)}=\frac{Area(BEC)}{2Area(BEC)}=\frac{1}{2}

Therefore option (a) is correct.

Similar questions