In triangle abc,b^2cos2A-a^2cos2B=
Answers
Answered by
34
b^2(2cos^2A-1)-a^2(2cos^2B-1)
=>( 2b^2cos^2A-2a^2cos^2B)+(a^2-b^2)
=>2(bcosA-acosB)(bcosA+acosB)+(a^2-b^2)
you know acosB+bcosA=c
use this
=> 2c(bcosA-acosB)+(a^2-b^2)
now use cosine formula formula A and B
=>(b^2+c^2-a^2-c^2-a^2+b^2)+(a^2-b^2)
=> b^2-a^2
=>( 2b^2cos^2A-2a^2cos^2B)+(a^2-b^2)
=>2(bcosA-acosB)(bcosA+acosB)+(a^2-b^2)
you know acosB+bcosA=c
use this
=> 2c(bcosA-acosB)+(a^2-b^2)
now use cosine formula formula A and B
=>(b^2+c^2-a^2-c^2-a^2+b^2)+(a^2-b^2)
=> b^2-a^2
abhi178:
I hope this is helpful
Answered by
1
Answer:
Your answer is b² - a²
Step-by-step explanation:
Explanation is given in the attachment.......
Happy studying...
Attachments:
Similar questions
Chemistry,
8 months ago
Math,
8 months ago
Hindi,
8 months ago
Math,
1 year ago
Computer Science,
1 year ago