In triangle ABC Cos A= 7/8 ,cos B = 11/16 than cos c ?
Answers
Answered by
0
Answer:
Step-by-step explanation:
In a triangle A + B + C = 180 so A + B = 180 - C
cos(A + B) = cos(180 - C) = -cosC
cosAcosB - sinAsinB = -cosC using compound angle identity
If cosA = 7/8 then sinA = √(1 - cos²A) = (√15)/8
Similarly If cosB = 11/16 then sinB = (√135)/16
Therefore cosC = sinAsinB - cosAcosB = [(√15)/8*(√135)/16] - [(7/8)(11/16)]
= [(√2025 - 77)]/(8*16) = (45 - 77)/(8*16) = -32/(8*16) = - ¼
hope it helps u
mark me as brainliest
Similar questions
Social Sciences,
5 months ago
World Languages,
5 months ago
English,
5 months ago
Math,
10 months ago
Physics,
10 months ago
History,
1 year ago
Math,
1 year ago