Math, asked by YAVA95, 1 year ago

In triangle abc, DE // BC and AD/DB = 3/5. If AC= 4.8 cm, find the AE.

Answers

Answered by MaheswariS
42

\textbf{Given:}

\text{In triangle ABC, $DE{\parallel}BC$, $\dfrac{AD}{DB}=\dfrac{3}{4}$, AC=4.8 cm}

\textbf{To find:}

AE

\textbf{Solution:}

\textbf{Basic proportionality theorem(Thales theorem):}

\textbf{If a line is drawn parallel to one side of a}

\textbf{triangle, then it cuts other two sides proportionally.}

\text{Let}\;AE=x

\text{Then,}\;EC=4.8-x

\text{By Thales theorem, we have}

\dfrac{AD}{DB}=\dfrac{AE}{EB}

\dfrac{3}{5}=\dfrac{x}{4.8-x}

3(4.8-x)=5\,x

14.4-3\,x=5\,x

14.4=5\,x+3\,x

8\,x=14.4

\implies\,x=\dfrac{14.4}{8}

\implies\,x=1.8\,cm

\textbf{Answer:}

\bf\,AE=1.8\,cm

Attachments:
Answered by Anonymous
30

Given :- ∆ABC.

DE//BC

& AD//DB = 3/5

AC = 4.8

To Find :- AE = ?

Proof :- In ∆ABC, DE//BC

Therefore, By BPT

 \frac{AD} { AB }  =  \frac{ AE }{EC}

 \frac{3}{5}  =  \frac{AE}{4.8 -AE}

3(4.8 - AE) = 5AE \\ 14.4 - 3AE = 5AE \\ 3AE + 5AE = 14.4 \\ 8AE = 14.4 \\ AE =  \frac{14.4}{8}  \\ AE = 1.8cm

keep smiling ❣️

Similar questions