Math, asked by sakshisingh17, 1 year ago

In triangle ABC,if a+b-3c=0,then what is the value of cosA+cosB?​


brunoconti: u mean cos(A + B)

Answers

Answered by brunoconti
3

Answer:

Step-by-step explanation:

Attachments:
Answered by Syamkumarr
0

Answer:

cos A + cos B = 6 sin² \frac{C}{2}

Step-by-step explanation:

Given that a + b - 3c = 0

=> a + b = 3c

According to sine rule,

\frac{a}{sin A} = \frac{b}{sinB} = \frac{c}{sin C} = x(Let)

=> a = x sin A

    b = x sin B

    c = x sin C

We also know that

A + B + C = 180°           (sum of ∠s of a Δ = 180°)

=> A + B = 180° - C

=> \frac{A+B}{2} = 90° - \frac{C}{2}                                                     --(i)

On substitution,

=> x sin A + x sin B = 3 * x sin C

=> x(sin A + sin B) = 3x sin C

=> sin A + sin B = 3 sin C

=> 2 sin(\frac{A+B}{2}) cos (\frac{A-B}{2}) = 3 sin C                     (by formula)

=> 2 sin (90° - \frac{C}{2})cos (\frac{A-B}{2}) = 3 sin C                   (from equation i)

=> 2 cos  \frac{C}{2} cos (\frac{A-B}{2}) = 3 *2*sin \frac{C}{2} cos \frac{C}{2}        (sin(90 - x) = cos x)

=>  cos (\frac{A-B}{2}) = 3 *sin \frac{C}{2}

=> cos (\frac{A-B}{2}) = 3 *sin (90° -  \frac{A+B}{2} )                   (from equation i)

=> cos (\frac{A-B}{2}) = 3 *cos ( \frac{A+B}{2} )

We need to find cos A + cos B

We know that cos A + cos B = 2cos(\frac{A+B}{2}) cos (\frac{A-B}{2})

                                               = 2 cos(\frac{A+B}{2}) * [3 *cos ( \frac{A+B}{2} ) ]

                                               = 6 cos²(\frac{A+B}{2})

                                               = 6 cos²(90° - \frac{C}{2} )                  (from equation i)

                                               = 6 sin² \frac{C}{2}

Therefore, cos A + cos B = 6 sin² \frac{C}{2}

Similar questions