in triangle ABC, if AD is the median tgen show that AB^2 +AC^2=2(AD^2+BD^2)
Answers
Draw an altitude AM from A to BC at M.
Here, BD = CD.
Assume that AM is at left of AD. See the figure.
So that,
AB² = BM² + AM²
⇒ AB² = (BD - DM)² + AM²
⇒ AB² = BD² - 2•BD•DM + DM² + AM²
⇒ AB² = BD² - 2•BD•DM + AD² → (1)
And,
AC² = CM² + AM²
⇒ AC² = (CD + DM)² + AM²
⇒ AC² = CD² + 2•CD•DM + DM² + AM²
⇒ AC² = CD² + 2•CD•DM + AD² → (2)
(1) + (2)
AB² + AC² = BD² - 2•BD•DM + AD² +CD² + 2•CD•DM + AD²
⇒ AB² + AC² = 2AD² + CD² + 2DM(CD - BD) + BD²
⇒ AB² + AC² = 2AD² + BD² + 2DM(BD - BD) + BD² [Because BD = CD]
⇒ AB² + AC² = 2AD² + BD² + 0 + BD²
⇒ AB² + AC² = 2AD² + 2BD²
⇒ AB² + AC² = 2(AD² + BD²)
Hence proved!
Plz mark it as the brainliest.
Thank you. :-))
Read more on Brainly.in - https://brainly.in/question/8591805#readmore
Answer:
AB² + AC² = 2(AD² + BD²).
Step-by-step explanation:
(i)
In ΔAED,
⇒ AD² = AE² + DE²
⇒ AE² = AD² - DE²
(ii)
In ΔAEB,
⇒ AB² = AE² + BE²
= AD² - DE² + BE²
= AD² - DE² + (BD + DE)² {BE = BD + DE}
= AD² - DE² + BD² + DE² + 2BD * DE - DE²
= AD² + BD² + 2BD * DE
(iii)
In ΔAEC,
⇒ AC² = AE² + EC²
= AD² - DE² + EC²
= AD² - DE² + (DC - DE)²
= AD² - DE² + DC² + DE² - 2DC * DE
= AD² + BD² - 2BD * DE {DC = BD}
On solving (ii) & (iii), we get
⇒ AB² + AC² = AD² + BD² + 2BD * DE + AD² + BD² - 2BD * DE
= AD² + BD² + AD² + BD²
= 2(AD² + BD)²
Hence proved.!
https://brainly.in/question/8591805