Math, asked by sahilmathur2432, 1 year ago

In triangle ABC if b+c=3a,then prove that cot B/2 cot C/2 = 2

Answers

Answered by phillipinestest
39

Answer:

Given : b+c = 3a

According to the half range formula, Cot\frac { B }{ 2 } =\sqrt { \frac { (s-a)(s-c) }{ s(s-b) } }

Cot\frac { C }{ 2 } =\sqrt { \frac { (s-a)(s-b) }{ s(s-c) } }

We know that {\frac{(a+b+c)}{2}} = s, given that b + c = 3a

                S = {\frac{( a + 3a )}{2}} ={\frac{ 4a}{ 2}} = 2a

Cot\frac { B }{ 2 } Cot\frac { C }{ 2 } = \sqrt { \frac { (s-a)(s-c) }{s(s-b) } } \times \sqrt { \frac { (s-a)(s-b) }{ s(s-c) } }

              = \sqrt { \frac { (2a-a)(2a-c) }{ 2a(2a-b) } } \times \quad \sqrt { \frac { (2a-a)(2a-b) }{ 2a(2a-c) } }

               = 2

Therefore, Cot\frac { B }{ 2 } Cot\frac { C }{ 2 } = 2

Answered by samanvitha10042004
2

Answer:

step by step explanation hope it helps you

Attachments:
Similar questions