In triangle ABC if LB=90 and cot A=1, then the value of cos C Sin A-Cos A Sin c is
Answers
Answered by
5
Answer:
Given in △ ABC, ∠B=90o.
Given in △ ABC, ∠B=90o.This given A+C=180o−90o=90o......(1).
Given in △ ABC, ∠B=90o.This given A+C=180o−90o=90o......(1).Now,
Given in △ ABC, ∠B=90o.This given A+C=180o−90o=90o......(1).Now,sinA.cosC+cosA.sinC
Given in △ ABC, ∠B=90o.This given A+C=180o−90o=90o......(1).Now,sinA.cosC+cosA.sinC=sin(A+C)
Given in △ ABC, ∠B=90o.This given A+C=180o−90o=90o......(1).Now,sinA.cosC+cosA.sinC=sin(A+C)=sin(90o)
Given in △ ABC, ∠B=90o.This given A+C=180o−90o=90o......(1).Now,sinA.cosC+cosA.sinC=sin(A+C)=sin(90o)=1.
I hope IT'S help full for you and follow me
Answered by
1
Answer:
A+B+C=180
in triangle
A+C=180-90
A+C=90
cosCsinA-CosAsinC=cos(A+B)
cos90=0
Similar questions