Math, asked by sakshideshmukh90, 11 months ago

In triangle ABC, m angle A=2π/3 radian
m angle B = 45°. Find m angle C in degree and radian measure.​

Answers

Answered by mysticd
22

 Given ,\: In \: \triangle ABC , \\\angle A = \frac{2\pi }{3} ,\: \angle B = 45\degree= \frac{\pi}{4} ,\\\angle C = ?

 \underline {\pink {( Angle \: Sum \: Property )}}

 \angle A + \angle B + \angle C = \pi

 \implies \frac{2\pi }{3} + \frac{\pi}{4} + \angle C = \pi

 \implies \frac{8\pi + 3\pi }{12} +\angle C = \pi

 \implies \frac{11\pi }{12} +\angle C = \pi

 \implies \angle C = \pi - \frac{11\pi}{12}

 \implies \angle C = \frac{12\pi - 11\pi}{12}

 \implies \angle C = \frac{\pi}{12} \:--(1)

 \implies \angle C = \frac{180\degree}{12}

 \boxed { \pink { Since,\:\pi = 180\degree }}

 \implies \angle C = 15\degree \: ---(2)

Therefore.,

 \red { \angle C } \green { = \frac{\pi}{12} = 15\degree }

•••♪

Similar questions