Math, asked by Mister360, 3 months ago

In triangle ABC Prove that,
\sf cos(A+B)+sinC=sin(A+B)-cosC

Answers

Answered by MisterIncredible
18

Question : -

In ∆ABC, Prove that;

cos (A+B) + sin C = sin (A+B) - cos C

ANSWER

Given : -

ABC is a ∆

Required to prove : -

  • cos (A+B) + sin C = sin (A+B) - cos C

Proof : -

Given that;

∆ABC is a ∆ where angles are A,B,C

so,

A + B + C = 180° (sum angle property)

Now,

A + B = 180° - C

By taking sin function on both sides

sin (A + B) = sin (180° - C)

sin (A + B) = sin C »»»(1)

This is because in the 2nd quadrant sin function is positive .

______________

Now, instead of sin let's take cos

cos (A + B) = cos (180° - C)

cos (A + B) = - cos C »»»(2)

This is because cos function is negative in the π quadrant .

__________________

To prove !

cos (A+B) + sin C = sin (A+B) - cos C

consider LHS part !

Consider the LHS part !

cos (A+B) + sin C

From (2)

- cos C + sin C

=> sin C - cos C ..(3)

Consider the RHS part !

sin (A+B) - cos C

From (1)

sin C - cos C ..(4)

_____________________

From (3)&(4) we have;

LHS = RHS = sin C - cos C

Hence Proved !


Anonymous: Great !
Mister360: Nice
ItzIshan: Bro there is a mistake in your answer
Answered by ItzIshan
24

QuestioN :-

In a triangle ABC , Prove that :-

  •  \sf \: cos(a + b) + sin \: c = sin \: (a + b) - cos \: c

SolutioN :-

Given that ABC is a triangle and we know that The sum of all three angle in a triangle = 180

So,

 \star \sf \: A + B + C = 180  \\  \\  \star \sf \: A + B = 180 - C  -  -  -  - (i) \\  \\  </u><u>

Now,

 \sf \: cos(a + b) + sin \: c = sin(a + b)  - cos \: c

Now substituting the value of (A + B) from equation (i) :-

 \implies \sf \: cos(180 - c) + sin \: c = sin(180 - c) - cos \: c

We know that :-

  •  \sf \: cos(180  +  c) = -  cos \: c
  •  \sf \: sin(180 - c) = sin \: c

So,

\implies \sf \:   - cos \: c  + sin \: c = sin \: c - cos \: c \\  \\ \implies \sf \:  \:  \sf \: - cos c + cos c = sin c - sin c \\  \\  \implies \sf \:  \: 0 =   0

LHS = RHS

_____________________________

Hope it will help you :)

Similar questions