Math, asked by krishmakkar2005, 1 year ago

In triangle ABC right angle at B and AB=5 BC=12 find values of sinA secA secC sinC

Answers

Answered by navdeep2189
0

Answer:

sin A= 0.92 sec A = 1.08 sec C= 2.63 sin C=0.38

Step-by-step explanation:

In a triangle with AB=5 and BC=12 then AC=\sqrt{AB^2+BC^2  } \\ = 13

sin A=BC/AC

sec A = 1/ sin A

sec C=AC/AB

sin C=1/sec C

Answered by Sauron
13

Answer:

The values are -

= {\sf{\sin(A)  =  \dfrac{12}{13}}}

= \sf{\sec(A)  =  \dfrac{13}{5}}

= \sf{\sin(C)  =  \dfrac{5}{13}}

= \sf{\sec(C)  =  \dfrac{13}{12}}

Step-by-step explanation:

Solution :

In ∆ ABC -

  • \angle B = 90°
  • AB = 5 units
  • BC = 12 units

By Pythagoras theorem,

⇒ (Hypotenuse)² = (Base)² + (Height)²

⇒ (AC)² = (AB)² + (BC)²

⇒ (AC)² = (5)² + (12)²

⇒ (AC)² = 25 + 144

⇒ (AC)² = 169

⇒ AC = 13 units

T ratios of \angle A -

  • Height = BC = 12
  • Base = AB = 5
  • Hypotenuse = AC = 13

\sf{\sin(A)  =  \dfrac{BC}{AC}}

\boxed{\sf{\sin(A)  =  \dfrac{12}{13}}}

\sf{\sec(A)  =  \dfrac{AC}{AB}}

\boxed{\sf{\sec(A)  =  \dfrac{13}{5}}}

\rule{300}{1.5}

T ratios of \angle C -

  • Height = BC = 12
  • Base = AB = 5
  • Hypotenuse = AC = 13

\sf{\sin(C)  =  \dfrac{AB}{AC}}

\boxed{\sf{\sin(C)  =  \dfrac{5}{13}}}

\sf{\sec(C)  =  \dfrac{AC}{BC}}

\boxed{\sf{\sec(C)  =  \dfrac{13}{12}}}

Therefore, the values are -

= {\sf{\sin(A)  =  \dfrac{12}{13}}}

= \sf{\sec(A)  =  \dfrac{13}{5}}

= \sf{\sin(C)  =  \dfrac{5}{13}}

= \sf{\sec(C)  =  \dfrac{13}{12}}

Similar questions