In triangle ABC right angle at B and AB=5 BC=12 find values of sinA secA secC sinC
Answers
Answered by
0
Answer:
sin A= 0.92 sec A = 1.08 sec C= 2.63 sin C=0.38
Step-by-step explanation:
In a triangle with AB=5 and BC=12 then AC= = 13
sin A=BC/AC
sec A = 1/ sin A
sec C=AC/AB
sin C=1/sec C
Answered by
13
Answer:
The values are -
=
=
=
=
Step-by-step explanation:
Solution :
In ∆ ABC -
B = 90°
- AB = 5 units
- BC = 12 units
By Pythagoras theorem,
⇒ (Hypotenuse)² = (Base)² + (Height)²
⇒ (AC)² = (AB)² + (BC)²
⇒ (AC)² = (5)² + (12)²
⇒ (AC)² = 25 + 144
⇒ (AC)² = 169
⇒ AC = 13 units
★ T ratios of A -
- Height = BC = 12
- Base = AB = 5
- Hypotenuse = AC = 13
⇒
⇒
⇒
⇒
★ T ratios of C -
- Height = BC = 12
- Base = AB = 5
- Hypotenuse = AC = 13
⇒
⇒
⇒
⇒
Therefore, the values are -
=
=
=
=
Similar questions