Math, asked by vlavish58571, 5 months ago

In triangle ABC, right angle At B if tan A = 1/3 find the values of the following
sin A cos C + cos A sin C
cos A cos C- sin A sin C​

Answers

Answered by Anonymous
7

 \bf  \LARGE\color{pink}Hello!

{ \huge{ \star }}\:  \:  \:  \:  \Large  \underline{ \bf \bold{GiveN :}}

{ { \rightsquigarrow} }\:    \:  \:  \:  \sf \: \triangle \: ABC  \:  \: is \:  \: a \:   \: \bf{ right \:  \: triangle}

{ { \rightsquigarrow} }\: \sf \:  \:   \:  \angle \: B =  \frac{ \pi}{2}  \\

{ { \rightsquigarrow} }\: \sf  \:  \: \tan \: A =  \frac{1}{3}  \\

______________________

 { \huge{ \star}} \LARGE \: \:   \:  \underline{\bf{To \:   \:  FinD  :}}

{  \large{\rightsquigarrow}}  \: \sf \:  \sin A \:   \cos  C \:  + \:  \cos A  \:  \sin C =  {?} \\

 \sf \rightsquigarrow \:  \cos A  \cos C-   \sin A  \sin C =  {?}^{}

_____________________

 { \huge{ \star}} \LARGE \: \:   \:  \underline{\bf{ SolutioN  :}}

As we know, sum of all angles of a triangle is π

So we can say,

 \:  \:  \:  \:  \:  \:  \:  \:  \sf \angle \: A +  \angle B +  \angle C = \pi

 \dashrightarrow \sf \angle \: A +  \angle C = \pi -  \angle B

 \dashrightarrow \sf \angle \: A +  \angle C =  \frac{  \pi}{2}  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }(1) \\

now,

 \sf \circ \:  \:  \:  \:  \: \tan \: A =  (\frac{1}{3} ) \\

 \sf \dashrightarrow A =  { \tan}^{ - 1} ( \frac{1}{3} )

From equation (1)

 \sf \dashrightarrow C=  \frac{\pi}{2}   - { \tan}^{ - 1} ( \frac{1}{3} )  \\

we know,

 \boxed{{  \large{\circ \:  \: }}  \: \sf \:  \sin A \:   \cos  C \:  + \:  \cos A  \:  \sin C =  { \sin(A +C) } }\\

putting value of sin (A+C)

 \sf \dashrightarrow \:  \sin (A+C) =  \sin \{ \cancel{{ \tan}^{ - 1} ( \frac{1}{3} )}  +  \frac{\pi}{2} -   \cancel{{ \tan}^{ - 1} ( \frac{1}{3} )} \} \\

 \:  \:  \sf \therefore \: \:  \:  \: { \underline{ \boxed{ \sf{\:  \sin (A+C) =  1 }}}}

we know,

 \boxed{ \sf \circ \: \:  \:  \:   \:  \cos \: A \cos C -  \sin  A \sin C =  \cos(A + C)}

Putting value of cos (A+C)

 \sf \dashrightarrow \:  \cos (A+C) =  \cos \{ \cancel{{ \tan}^{ - 1} ( \frac{1}{3} )}  +  \frac{\pi}{2} -   \cancel{{ \tan}^{ - 1} ( \frac{1}{3} )} \} \\

 \:  \:  \sf \therefore \: \:  \:  \: { \underline{ \boxed{ \sf{\:  \cos (A+C) =  0 }}}}

_____________________

 { \huge{ \star}} \LARGE \: \:   \:  \underline{\bf{ RequireD \:  \:  ConcepT :}}

 {{  {1) \:  \: }}  \: \sf \:  \sin A \:   \cos  C \:  + \:  \cos A  \:  \sin C =  { \sin(A +C) } }\\

 { \sf 2)\:  \:   \:  \cos \: A \cos C -  \sin  A \sin C =  \cos(A + C)}

____________________

 { \huge{ \star}} \LARGE \: \:   \:  \underline{\bf{ConcepT \:  \:  BoosteR :}}

 {{  {1) \:  \: }}  \: \sf \:  \sin A \:   \cos  C \:   -  \:  \cos A  \:  \sin C =  { \sin(A  - C) } }\\

 { \sf 2)\: \:    \:  \cos \: A \cos C  +  \sin  A \sin C =  \cos(A  - C)}

  \sf 3) \:   \: \:  \tan(A+C) =  \frac{ \tan A +  \tan C }{1 -  \tan A  \tan C }

  \sf 4) \:   \: \:  \tan(A - C) =  \frac{ \tan A  -   \tan C }{1  +  \tan A  \tan C }

_________________

HAVE A WONDERFUL DAY AHEAD...

 \tt \fcolorbox{skyblue}{skyblue}{@StayHigh}

Attachments:
Similar questions