Math, asked by ayushgupta9162015, 11 months ago

in triangle abc right angled at B and BD perpendicular to AC and AD is equal to 8 cm and CD is equal to 10 cm then AB equal to​

Answers

Answered by CharmingPrince
6

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Question}}}}}{\bigstar}

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

In\ \triangle ABC\ right-angled\ at\ B\ and\\ BD \perp AC\ and\ AD = 8\ cm\ and\\ CD = 10\ cm ,\ then\ find\ AB

□☆□☆□☆□☆□☆□☆□☆□☆□☆□

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\bigstar}{ \green{ \mathfrak{ \underline{ \underline{Answer}}}}}{\bigstar}

\boxed{\red{\bold{In \triangle ADB and \triangle ABC}}}

\angle ADB = \angle ABC (\because\ each\ angle\ 90^o)

\angle A = \angle A(common)

\purple{\implies \triangle ADB \sim \triangle ABC} \blue{(By\ AA\ similarity)}

\boxed{\red{\bold{Taking\ sides\ proportional:}}}

\blue{\implies \displaystyle \frac{AD}{BC} = \frac{BD}{BC} = \frac{AB}{AC}}

\blue {\implies}\displaystyle \frac{AD}{AB} = \frac{AB}{AC}

{\blue{\implies}}AB^2 = AD . AC

{\blue{\implies}}AB^2 = 8(8+10)

{\blue{\implies}}AB^2 = 8 × 18

{\blue{\implies}}AB^2 = 144

\boxed{\red{\bold{Taking\ square\ roots:}}}

\green{\implies AB= \sqrt{144}}

\green{\boxed{\implies{\boxed{AB=12}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Attachments:
Similar questions