Math, asked by GDSB6328, 8 months ago

In triangle ABC right angled at c AC =4cm and ab=8cm find angle a and b

Answers

Answered by ItzAditt007
12

AnswEr:-

Your Answer Is:-

  • <A = 60°
  • <B = 30°

ExplanaTion:-

Given:-

  • A right angle triangle ABC right angled at C.

  • AB = 8 cm.

  • AC = 4 cm.

See the figure below:-

\setlength{\unitlength}{20} \begin{picture}( 0 , 0 ) \put( 1 , 1){ \line( 0 , 1){4}}\put( 1 , 1){ \line( 1 , 0){4}}\put( 5 , 1){ \line( 0 , 1){0}}\put( 1 , 5){ \line( 1 ,  - 1){4}}\put(0.5, ){$ \rm{C}$} \put(0.5,5 ){$ \rm{A}$}\put(5.2, ){$ \rm{B}$}\put(0, 2.5){$ \rm{4 \:cm}$} \put(3.2, 3){$ \rm{8 \: cm}$}  \end{picture}

To Find:-

  • The measure of <A and <B.

Concepts Used:-

  \\ \tt \bullet \:  \:  \sin \theta =  \dfrac{P}{H} . \\  \\  \rm and \\  \\  \tt \bullet \:  \:  \cos \theta =  \frac{B}{H} .  \\

Where,

  • P = Perpendicular.
  • B = Base.
  • H = Hypotenuse.
  • \tt\theta = Angle.

IDs Used:-

\rm\bullet \: \: value \:  \: of \:  \:   \tt\sin30 \degree =  \dfrac{1}{2}...id \:  \: 1. \\  \\   \rm and \\  \\  \rm \bullet \:  \: value \:  \: of \:  \:  \tt \cos60 \degree =  \dfrac{1}{2}...id \:  \: 2.

So Here,

For Angle B,

  • P = AC = 4 cm.
  • B = BC.
  • H = AB = 8 cm.

For Angle A,

  • P = BC.
  • B = AC = 4 cm.
  • H = AB = 8 cm.

Therefore by using IDs we get:-

 \\ \tt\mapsto \sin B = \frac{P}{H} . \\  \\  \tt\mapsto \sin B =  \cancel\frac{4 \: cm}{8 \: cm} . \\  \\ \tt\mapsto \sin B =  \frac{1}{2}  \\  \\ \tt\mapsto \angle B  = 30 \degree \\  \\  \rm(by \:  \: using \:  \: id \:  \: 1). \\  \\  \rm similarly \\  \\ \tt\mapsto \cos A =  \frac{B}{H} . \\  \\ \tt\mapsto \cos A =   \cancel\frac{4 \: cm}{8 \: cm} . \\  \\ \tt\mapsto \cos A =  \frac{1}{2} . \\  \\ \tt\mapsto \angle A = 60 \degree \\  \\  \rm(by \:  \: using \:  \: id \:  \: 2).

\large\bf{\therefore} The Measure of angle A is 60° and measure of angle B is 30°.

Similar questions