Math, asked by sprmrp, 1 year ago

in triangle ABC the value of cos((a+2b+3c)/2)+cos((a-c)=2)=​

Answers

Answered by amirgraveiens
27

\frac{cos((a+2b+3c)}{2}+\frac{cos((a-c)}{2}  =0

Step-by-step explanation:

Given:

Here ABC is a triangle.

\frac{cos((a+2b+3c)}{2}+\frac{cos((a-c)}{2}  =?

We know that in ΔABC, A + B + C = π

Also, \frac{A + B + C}{2}=\frac{\pi}{2}

Using formula

cos C + cos D = 2 cos(\frac{C+D}{2} )cos \frac{cos (C-D)}{2}

Now,

\frac{cos((a+2b+3c)}{2}+\frac{cos((a-c)}{2}

= 2cos[\frac{\frac{a+2b+3c}{2} }{2} +\frac{\frac{a-c}{2} }{2}] cos [\frac{\frac{a+2b+3c}{2} }{2}-\frac{\frac{(a-c)}{2} }{2}]

= 2cos[\frac{\frac{a+2b+3c+a-c}{2} }{2} ]cos[\frac{\frac{a+2b+3c-a+c}{2} }{2} ]

= 2cos[{\frac{2a+2b+2c}{4} ]cos[\frac{{2b+4c} }{4} ]

= 2cos[{\frac{2(a+b+c)}{4} ]cos[\frac{{2(b+2c)} }{4} ]

= 2cos[{\frac{(a+b+c)}{2} ]cos[\frac{{(b+2c)} }{2} ]  

= 2cos[{\frac{{\pi}}{2} ]cos[\frac{{(b+2c)} }{2} ]                  [given]

= 2\times 0 \times cos[\frac{{(b+2c)} }{2} ]                 [cos\frac{\pi}{2}=0 ]

= 0

Answered by rudhra73
8

HEY MATE HERE IS YOUR ANSWER

HEY MATE HERE IS YOUR ANSWERSEE THE ATTACHEMENT

HEY MATE HERE IS YOUR ANSWERSEE THE ATTACHEMENTHOPE THIS MAY HELP YOU OUT

Attachments:
Similar questions