Math, asked by BrainlyRaaz, 6 months ago

In triangle DEF, right angled at e, de = 4 cm and fe = 3 cm. find the values of sin D, sin F, sec D and sec F. ​

Answers

Answered by TheProphet
9

S O L U T I O N :

\underline{\bf{Given\::}}

In Δ DEF, right angled at E, DE = 4 cm & FE = 3 cm.

\underline{\bf{Explanation\::}}

Firstly, attachment a figure of right angled Δ according to the given question.

We have two sides;

  • DE = 4 cm
  • FE = 3 cm

\underline{\underline{\tt{Using\:\:by\:\:Pythagoras\:\:theorem\::}}}

\mapsto\sf{(Hypotenuse)^{2} = (Base)^{2} + (Perpendicular)^{2} }

\mapsto\sf{(FD)^{2} = (FE)^{2} + (DE)^{2} }

\mapsto\sf{(FD)^{2} = (3\:cm)^{2} + (4\:cm)^{2} }

\mapsto\sf{(FD)^{2} = 9\:cm^{2} + 16\:cm^{2} }

\mapsto\sf{(FD)^{2} =   25\:cm^{2} }

\mapsto\sf{FD =   \sqrt{25\:cm^{2}}  }

\mapsto\bf{FD =   5\:cm }

Now, the values get :

As we know that,

\boxed{\bf{sin\:\theta = \frac{Perpendicular }{Hypotenuse} }}

\mapsto\tt{sin\:D = \dfrac{FE}{FD}}

\mapsto\bf{sin\:D = \dfrac{3\:cm}{5\:cm}}

&

\mapsto\tt{sin\:F = \dfrac{DE}{FD}}

\mapsto\bf{sin\:F= \dfrac{4\:cm}{5\:cm}}

As we know that,

\boxed{\bf{sec\:\theta = \frac{Hypotenuse }{Base} }}

Therefore,

\mapsto\tt{sec\:D = \dfrac{FD}{DE}}

\mapsto\bf{sec\:D = \dfrac{5\:cm}{4\:cm}}

&

\mapsto\tt{sec\:F = \dfrac{FD}{FE}}

\mapsto\bf{sec\:F = \dfrac{5\:cm}{3\:cm}}

Attachments:
Answered by sumanrudra22843
0

Step-by-step explanation:

sin D = 3cm/5cm

sin F = 4cm / 5 cm

sec D = 5cm / 4 cm

Similar questions