Math, asked by kjsir, 1 year ago

IN TRIANGLE PQR RIGHT ANGLED AT Q PR+QR=25 CM AND PQ=5 CM. DETERMINE THE VALUE OF SIN P, COS P AND TAN P​

Answers

Answered by Anonymous
12

PR+QR=25 CM

PR=25-QR

PQ=5 CM

 {h}^{2}  =  {p}^{2}  +  {b}^{2} \\  \sin( p)  = ( \frac{p}{h} )   =  \frac{12}{15}  \\ cos \:( p) =  \frac{5}{13}  \\  \tan(p)  =  \frac{12}{5}

Answered by Anonymous
15

Step-by-step explanation:

Given PR + QR = 25 , PQ = 5

PR be x.  and QR = 25 - x 

Pythagoras theorem ,PR2 = PQ2 + QR2

x2 = (5)2 + (25 - x)2

x2 = 25 + 625 + x2 - 50x

50x = 650

x = 13

 

 PR = 13 cm

QR = (25 - 13) cm = 12 cm

sin P = QR/PR = 12/13

cos P = PQ/PR = 5/13

tan P = QR/PQ = 12/5 

Similar questions