In triangle $XYZ$, $\angle X = 60^\circ$ and $\angle Y = 45^\circ$. The bisector of $\angle X$ intersects $\overline{YZ}$ at $W.$ If $XW = 24,$ then find the area of triangle $XYZ$.
[asy]
pair A,B,C,T,X,Y;
A = (0,0);
C = rotate(60)*(1,0);
B = (0.5+sqrt(3)/2,0);
T = intersectionpoint (C--B, A -- (rotate(30)*(5,0)));
draw(T--A--C--B--A);
label("$X$",A,SW);
label("$Y$",B,SE);
label("$Z$",C,N);
label("$W$",T,NE);
[/asy]
Answers
Answered by
0
Answer:
We have,
ABCD as the cyclic quadrilateral in which the diagonal AC and BD.
intersect each other at point P.
also, given that,
AB=8cm,
CD=5cm
Now,
In ΔDCA and ΔAPB,
We have
∠DCP=∠ABP
∠CDP=∠PAB
Hence,
ΔDPC∼ΔAPB (by A.A property)
According to the given question,
arΔAPBarΔDPC=(ABDC)2
⇒24arΔDPC=(85)2
⇒24arΔDPC=6425
⇒arΔDPV=6425×24
arΔDPC=9.375cm2
Similar questions