Math, asked by srkkrishna1977, 10 months ago

In what ratio does the point ( -4,6) divide the line segment joining the points A(-6,10) and B(3,-8)?

Answers

Answered by Anonymous
8

\huge{\underline{\underline {\bf{\blue{Answer:-}}}}}

\large\bold{\underline{\sf{\pink{\dag \; GivEn:-}}}}

  • Coordinates of A → (-6,10)
  • Coordinates of B → (3,-8)
  • Point dividing the line segment → C(-4,6)

\large\bold{\underline{\sf{\pink{\dag \; Solutions:-}}}}

\implies Using \ section \ formula:-

x  = \dfrac{ \sf m_1 \sf x_2 + \sf m_2 \sf x_1 }{ \sf m_1 + \sf m_2 }

 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ or

y = \dfrac{ \sf m_1 \sf x_1 + \sf m_2 \sf y_1 }{ \sf m_1 + \sf m_2 }

\implies -4  = \dfrac{ 3 \sf m_1 - 6 \sf m_2 }{ \sf m_1 + \sf m_2 }

\implies -4 \sf m_1 - 4 \sf m_2 = 3 \sf m_1 - 6 \sf m_2

\implies -4 \sf m_1 - 3 \sf m_1 = -6 \sf m_2 + 4 m_2

\implies -7 \sf m_1 = -2 \sf m_2

\implies \dfrac{ \sf m_1}{ \sf m_2} = \dfrac{-7}{-2}

\implies \sf m_1 : \sf m_2 = 7 : 2

★ To verify our answer also solve it from y point :-

\implies 6  = \dfrac{ -8 \sf m_1 +10 \sf m_2 }{ \sf m_1 + \sf m_2 }

\implies 6 \sf m_1 + 6 \sf m_2 =-8 \sf m_1 +10 \sf m_2

\implies 6 \sf m_1 + 8 \sf m_1 = 10 \sf m_2 - 6 \sf m_2

\implies 14 \sf m_1 = 4 \sf m_2

\implies \dfrac{ \sf m_1}{ \sf m_2} = \cancel \dfrac{14}{4}

\implies \dfrac{ \sf m_1}{ \sf m_2} = \dfrac{7}{2}

\implies \sf m_1 : \sf m_2 = 7 : 2

\large\bold{\underline{\sf{\red{\dag \; Hence, \; in \; both \; case \; ratio \; is \; 7:2.}}}}

\dag \ Therefore, \ our \ ans \ is \ correct.

\large\bold{\underline{\boxed{\sf{\blue{ \sf m_1 : \sf m_2 \; = \; 7:2.}}}}}

___________________________________


Anonymous: Great answer
Anonymous: Nice one :O
Anonymous: Splendid ❤️
Answered by Anonymous
1

☯ Let the points A(-6,10) and B(3,-8) is divided by point (-4,6) in the ratio m : n.

DIAGRAM

\setlength{\unitlength}{14mm}\begin{picture}(7,5)(0,0)\thicklines\put(0,0){\line(1,0){5}}\put(5.1, - 0.3){\sf B}\put( - 0.2, - 0.3){\sf A}\put(5.2, 0){\sf (3,-8)}\put( - 0.7, 0){\sf (-6,10)}\put(2.3, 0.2){\sf C}\put(2.2, - 0.3){\sf (-4,6)}\put(5, 0){\circle*{0.1}}\put(2.4, 0){\circle*{0.1}}\put(0, 0){\circle*{0.1}}\put(1,0.2){\sf m}\put(3.5, 0.2){\sf n}\end{picture}

━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\underline{\bigstar\:\boldsymbol{Using\:section\:formula\::}}\\ \\\end{gathered}

\begin{gathered}\star\;{\boxed{\sf{\pink{(x,y) = \bigg( \dfrac{m x_2 + n x_1}{m + n}\;,\; \dfrac{m y_2 + n y_1}{m + n} \bigg)}}}}\\ \\\end{gathered}

\begin{gathered}\sf Here \begin{cases} \sf{x_1 , y_1 = -6,10} \\ \sf{x_2 , y_2 = 3,-8} \end{cases}\\ \\\end{gathered}

Therefore,⠀⠀

\begin{gathered}:\implies\sf \dfrac{m \times 3 + n \times -6}{m + n} = -4 \\\\\\:\implies\sf m \times 3 + n \times -6 = - 4m -4n\\\\\\:\implies\sf 3m - 6n = -4m - 4n\\\\\\:\implies\sf 3m + 4m = 6n - 4n \\\\\\:\implies\sf 7m = 2n\\\\\\:\implies\sf \dfrac{m}{n} = \dfrac{ 2}{7}\\\\\\:\implies{\underline{\boxed{\sf{\purple{m : n = 2 : 7}}}}}\;\bigstar\\ \\\end{gathered}

\therefore\;{\underline{\sf{The\;ratio\; in \;which \;(-4,6)\; divides\; the \;line\; segment\; is\; {\textsf{\textbf{2 : 7}}}.}}}

━━━━━━━━━━━━━━━━━━━━━━

Similar questions