Math, asked by vishwa9886287441, 2 months ago

in what ratio does the point (-4, 6) divide the line segment joining the points A (-6, 10) and (3, -8)​

Answers

Answered by sathya8147889327
0

\pink{ \huge{❀ \: lol \: ❀}}❀lol❀

Answered by diya407
2

Step-by-step explanation:

In what ratio does the point \sf (-4,6)(−4,6) divide the line segment joining the points \sf (-6,10)(−6,10) and \sf (3,6)(3,6) ?

\begin{gathered} \\ \end{gathered}

\huge{\underline{\textsf{\textbf{\red{Solution...}}}}}

Solution...

Here, we are given three points as follows :

\green{\textsf{\textbf{A:(-6,10)}}}A:(-6,10)

\green{\textsf{\textbf{B:(3,6)}}}B:(3,6)

\green{\textsf{\textbf{C:(-4,6)}}}C:(-4,6)

Now, we shall find in what ratio the point C divides the line joining the points A and C.

We should find the ratio between AC and CB :

Let the required ratio be : \green{\sf{k:1}}k:1 .

So, now :

\sf m_1: km

1

:k

\sf m_2: 1m

2

:1

\sf x_1: -6x

1

:−6

\sf x_2: 3x

2

:3

\sf y_1:10y

1

:10

\sf y_2:6y

2

:6

\sf x:-4x:−4

\sf y:6y:6

Using the section formula :

\green{:\implies{\pmb{\sf{x = \dfrac{ m_{1} x_{2} + m_{2} x_{1}}{ m_{1} + m_{2}}}}}}:⟹

x=

m

1

+m

2

m

1

x

2

+m

2

x

1

x=

m

1

+m

2

m

1

x

2

+m

2

x

1

\sf: \implies - 4 = \dfrac{k(3) + 1( - 6)}{k + 1}:⟹−4=

k+1

k(3)+1(−6)

\sf: \implies - 4 = \dfrac{3k - 6}{k + 1}:⟹−4=

k+1

3k−6

\sf: \implies - 4(k + 1) = 3k - 6:⟹−4(k+1)=3k−6

\sf: \implies - 4k - 3k = - 6 + 4:⟹−4k−3k=−6+4

\sf: \implies - 7k = -2:⟹−7k=−2

\green{:\implies{\pmb{\sf{k = \dfrac{2}{7}}}}}:⟹

k=

7

2

k=

7

2

Now, substituting the value of k in k : 1 :

\sf : \implies \dfrac{2}{7} : 1:⟹

7

2

:1

We'll multiply the ratio with 7 to get the non-fractional values :

\sf: \implies7 (\dfrac{2}{7}) : 1(7):⟹7(

7

2

):1(7)

\green{:\implies{\pmb{\sf{2 : 7}}}}:⟹

2:7

2:7

\begin{gathered} \\ \end{gathered}

___________________

Therefore, the point (-4,6) divides the line segment joining the points (-6,10) and (3,6) in the ratio of 2 : 7.

Similar questions