Math, asked by priyaatul2008, 1 year ago

In what ratio does the point (-5,3) divides the join of (-3,-1) and (-8,9).​

Answers

Answered by vahul004
2

Step-by-step explanation:

a line is made of points (-3,-1) and (-8,9)

it is divided by (-5,3) in ratio:-

-5=-3(n)+-8(m)/m+n

-5m-5n=-3n-8m

3m=2n

m/n=2/3

there for the point (-5,3) divides the line joining (-3,-1),(-8,9) in ratio 2:3

Answered by silentlover45
3

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: {({-5}, \: {3})} \: \: divides \: \: the \: \: line \: \: segment \: \: {({-3}, \: {-1})} \: \: and \: \: {({-8}, \: {9})}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: Ratio \: \: in \: \: {({-5} \: , \: {3})} \: \: divides \: \: the \: \: the \: \: line \: \: segment?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: {x} \: \: \: = \: \: \: {-5} \: \: \: \: \: \: \: \: {y} \: \: \: = \: \: \: {3}
  • \: \: \: \: \: \: \: {x_1} \: \: \: = \: \: \: {-3} \: \: \: \: \: \: \: \: {y_1} \: \: \: = \: \: \: {-1}
  • \: \: \: \: \: \: \: {x_2} \: \: = \: \: {-8} \: \: \: \: \: \: \: \: {y_2} \: \: = \: \: {9}

\: \: \: \: \: \fbox{{x} \: \: = \: \: \frac{{mx_2} \: + \: {nx_1}}{m \: + \: n} \: \: \: \: \: \: \: {y} \: \: = \: \: \frac{my_2} \: + \: {ny_1}{m \: + \: n}}

\: \: \: \: \: \therefore {x} \: \: = \: \: \frac{{mx_2} \: + \: {nx_1}}{m \: + \: n}

\: \: \: \: \: \leadsto {-5} \: \: = \: \: \frac{m \: {-8} \: + \: n \: {-3}}{m \: + \: n}

\: \: \: \: \: \leadsto {-5m} \: - \: {5n} \: \: = \: \: {-8m} \: - \: {3n}

\: \: \: \: \: \leadsto {8m} \: - \: {5m} \: \: = \: \: {-3n} \: + \: {5n}

\: \: \: \: \: \leadsto {3m} \: \: = \: \: {2n}

\: \: \: \: \: \leadsto \frac{m}{n} \: \: = \: \: \frac{2}{3}

\: \: \: \: \: \therefore {y} \: \: = \: \: \frac{{my_2} \: + \: {ny_1}}{m \: + \: n}

\: \: \: \: \: \leadsto {3} \: \: = \: \: \frac{m \: {9} \: + \: n \: {-1}}{m \: + \: n}

\: \: \: \: \: \leadsto {3m} \: - \: {3n} \: \: = \: \: {9m} \: + \: {-1n}

\: \: \: \: \: \leadsto {3m} \: - \: {9m} \: \: = \: \: {-1n} \: - \: {3n}

\: \: \: \: \: \leadsto {-6m} \: \: = \: \: {-4n}

\: \: \: \: \: \leadsto \frac{m}{n} \: \: = \: \: \frac{-4}{-6}

\: \: \: \: \: \leadsto \frac{m}{n} \: \: = \: \: \frac{2}{3}

\: \: \: \: \: \leadsto {m} \: : \: {n} \: \: = \: \: {2} \: : \: {3}

\: \: \: \: \: \therefore The \: \: point \: \: divides \: \: the \: \: line \: \: in \: \: ratio \: \: {2} \: : \: {3}

__________________________________

Similar questions