Math, asked by kajalsoni414, 10 months ago

in what time will 5400rs amount to 6773.76rs at 12% per annum compounded anually​

Answers

Answered by BrainlyConqueror0901
9

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Time=2\:years}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given :}} \\  \tt: {\implies Principal(p) = 5400 \: rupees} \\  \\  \tt:  \implies Amount(A) = 6773.76 \: rupees \\  \\  \tt:  \implies Rate\% = 12\% \\  \\   \red{ \underline \bold{To \: Find:}} \\   \tt:  \implies Time(t) = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies A = p(1 +  \frac{r}{100} )^{t}  \\  \\  \tt:  \implies 6773.76 = 5400(1 +  \frac{12}{100} )^{t}  \\  \\  \tt:  \implies \frac{6773.76}{5400}  =( 1 + 0.12)^{t}  \\  \\   \tt:  \implies 1.2544 = (1.12)^{t}  \\  \\  \tt:  \implies (1.12)^{2}  =  {(1.12)}^{t}  \\  \\ \text{Both \: side \: bases \: are \: same} \\   \text{So, \: powers \: are \: also \: same} \\\\  \tt:  \implies 2 = t \\  \\   \green{\tt:  \implies t = 2 \: years}

Answered by TakenName
5

Hi.

Increasing Rate :- 12%

Starting Money :- 5400

Formula :- 5400\times (1+\frac{12}{100}) ^x

5400\times(1+\frac{12}{100} )^x=6773.76

(1+\frac{12}{100} )^x=\frac{6773.76}{5400}

(\frac{28}{25}) ^x=\frac{784}{625}

log_\frac{28}{25} (\frac{28}{25} )^x = log _\frac{28}{25} \frac{28^2}{25^2}

x = 2 (years)

Similar questions