Math, asked by nariganaya, 3 months ago

In what time will 64,000 amount to 1,12,000
at 25% SI per annum?​

Answers

Answered by BrainlyTopper97
245

{\large{\boxed{\underline{\mathrm{\bf{\orange{Given:-}}}}}}}

  • Principal = 64,000
  • Amount = 1,12,000
  • Rate of Interest = 25%

{\large{\boxed{\underline{\mathrm{\bf{\red{To \ Find:-}}}}}}}

  • Time

{\large{\boxed{\underline{\mathrm{\bf{\pink{Formula \ Used:-}}}}}}}

{\pink{\bigstar}} \ {\boxed{\tt{\blue{I = A-P}}}} \ {\pink{\bigstar}}

where,

  • I = Interest
  • A = Amount i.e. 1,12,000
  • P = Principal i.e. 64,000

{\pink{\bigstar}} \ {\boxed{\tt{\green{T = \dfrac{S.I. \times 100}{P \times R}}}}} \ {\pink{\bigstar}}

where,

  • T = Time
  • S.I. = Simple Interest
  • P = Principal i.e. 64,000
  • R = Rate of Interest i.e. 15%

{\large{\boxed{\underline{\mathrm{\bf{\blue{Solution:-}}}}}}}

According to the question by using the formula of Interest, we get,

\longmapsto {\sf{I = 1,12,000 - 64,000}}

\longmapsto {\sf{I = 48,000}}

Simple Interest = 48,000

According to the question by using the formula of Time, we get,

: \ \longmapsto \ {\sf{Time = \dfrac{48,000 \times 100}{64,000 \times 25} \ years }}

: \ \longmapsto \ {\sf{Time = \dfrac{48,{\cancel{000}} \times {\cancel{100}}}{64,{\cancel{000}} \times {\cancel{25}}} ^{ \ 4} \ years }}

: \ \longmapsto \ {\sf{Time = \dfrac{48 \times 4}{64} \ years }}

: \ \longmapsto \ {\sf{Time = \dfrac{{\cancel{48}} ^{ \ 3} \times 4}{{\cancel{64}^{ \ 4}}} \ years }}

: \ \longmapsto \ {\sf{Time = \dfrac{3 \times 4}{4} \ years }}

: \ \longmapsto \ {\sf{Time = \dfrac{12}{4} \ years }}

: \ \longmapsto \ {\sf{Time = \dfrac{{\cancel{12}}}{{\cancel{4}}} ^{\ 3} \ years }}

: \ \Longrightarrow \ {\orange{\sf{Time = 3 \ years }}}

{\orange{\bigstar}} \ \therefore {\boxed{\underline{\mathsf{\green{Time}{\purple{ \ is \ }{\blue{\bf{3 \ years}}}}}}}} \ {\orange{\bigstar}}

{\huge{\green{\checkmark}}} \ {\large{\boxed{\underline{\mathrm{\bf{\orange{Verification:-}}}}}}} \ {\huge{\green{\checkmark}}}

: \ \longmapsto \ {\sf{S.I. = \dfrac{P \times R \times T}{100} }}

: \ \longmapsto \ {\sf{48,000 = \dfrac{64,{\cancel{000}} \times 25 \times 3}{{\cancel{100}}} }}

: \ \longmapsto \ {\sf{48,000 = 640 \times 25 \times 3 }}

: \ \longmapsto \ {\sf{48,000 = 640 \times 75 }}

: \ \longmapsto \ {\sf{48,000 = 48,000 }}

\Longrightarrow {\bf{\pink{LHS = RHS}}} \Longleftarrow

{\mathsf{Hence, Verified}} \ {\large{\green{\checkmark}}}

Answered by mathdude500
24

\sf\large\underline\green{Given:-}

\sf{\implies Sum\:_{(principal)}=64000}

\sf{\implies Sum\:_{(amount)}=112000}

\sf{\implies Rate\:_{(interest)}=25\%}

\sf\large\underline\purple{To\: Find:-}

\sf{\implies Time\:_{(annually)}=?}

\sf\large\underline\purple{Solution:-}

Given

  • Amount = 1, 12, 000

  • Principal = 64, 000

So,

Interest is evaluated by using the Formula,

 \bigstar \:  \: { \boxed{ \green{ \tt \: Interest \:  = Amount - Principal}}}

\rm :\implies\: \: Interest = 112000 - 64000

\rm :\implies\:Interest = 48000

Now,

We have

  • Principal = 64000

  • Interest = 48000

  • Rate of Interest = 25 % per annum

So, using formula of Simple interest,

 \bigstar \: { \boxed{ \pink{ \tt \: Interest = \dfrac{Principal \times Rate \times Time}{100} }}}

\rm :\implies\:48000 = \dfrac{64000  \times 25 \times Time}{100}

\rm :\implies\:Time = \dfrac{48000 \times 100}{64000 \times 25}

  \large\boxed{ \green{\rm :\implies\:Time \:  =  \: 3 \: years}}

Similar questions