Math, asked by sachin4470, 11 months ago

In what time will a sum of money double itself at 15% p.a​

Answers

Answered by ItźDyñamicgirł
9

Given

Principal = P

Amount = w/o

rate = 15% per annum

time = t

___________________________

Solution

 \sf \color{red}\dfrac{compound \: interest}{a \:  = 1(1 +  \dfrac{r}{10} {)}^{t}  }

 \bf \implies \: 2p = p(1 +  {\frac{15}{100})}^{t}  \\

 \implies \bf \dfrac{2p}{p}  = (1 +  {\dfrac{15}{100})}^{t}  \\

 \implies \bf \: 2 = ( {\dfrac{115}{100})}^{t}

 \implies \bf \:  { (\dfrac{23}{20} }^{t} ) \\

 \sf \color{red} \: method \: changed

 \implies \bf \dfrac{2p}{p}  = 1 +  \dfrac{15t}{100}  \\

 \bf \implies \: 2 = 1 +  \dfrac{15t}{100}  \\

 \implies \bf \dfrac{15t}{10}  = 1 \\

 \bf \implies \: t =  \dfrac{100}{15}  =  \dfrac{20}{3}  \\

 \bf \color{purple} \dfrac{simple \: interest}{a = 2p}

 \bf \: si = a - principal \: amount \\

 \bf \implies \: 2p - p = p

 \color{pink} \bf  \: si \:  =  \dfrac{p \times r \times t}{100}

 \bf \implies \:  \cancel{p} =  \dfrac{ \cancel{p} \times 15 \times t}{100}  \\

 \bf \:  \implies \: t =  \dfrac{100}{15}  =  \dfrac{20}{3}  \\

____________________________

Note !!

Formula Which we Used are colored !

Answered by itzcutejatni
2

Answer:

\huge\underline\mathfrak\red{❥Answer}

Step-by-step explanation:

If the principal be x, then amount = 2x We know that, SI = Amount - Principal = 2x - x = x

time =  \frac{si \times 100}{principal \times rate}  =  \frac{ x \times 100}{x \times 15}   \\  =  \frac{20}{3 }  = 6 \times \frac{2}{3} years

Similar questions