Math, asked by ratnadeepkaranjavkar, 6 months ago

in∆XYZ seg xy≈segxz,YQ and seg.zp are the angle Bisector of angle and y angle z respectively angle x 28° then find angle YOZ​

Attachments:

Answers

Answered by Theopekaaleader
34

/bold{Solution}

 \bold{in \: ∆xyz} \\  \tt  \bold{given} \\   \longmapsto \tt \:  < xyz = 54degree \\  \longmapsto \tt  < x = 62degree \\  \bold{to \: find} \\  \longmapsto \tt  < ozy \\ \longmapsto \tt  < yoz \\  \\  \bold{solution  : :} \\ \\  \longmapsto \tt  < x +  < y +  < z = 180degree(a.s.p) \\  \longmapsto \tt 62degree + 54degree +  < z = 180degree \\  \longmapsto \tt  < z = 180degree - 116degree \\  \longmapsto \:  < z = 64degree \\  \bold{so} \\  \longmapsto \tt  < ozy =  \frac{54}{2}  = 27degree \\  \bold{similiary} \\  \longmapsto \:  < ozy =  \frac{64}{2}  = 32degree \\  \bold{now} \\  \bold{ \:∆yoz} \\  \longmapsto \tt  < yoz +  < oyz  +  < ozy = 180degree(a.s.p) \\  \longmapsto \tt  < yoz + 27degree  + 32degree = 180degree \\  \longmapsto \tt  < yoz + 59degree = 180degree \\  \longmapsto \tt  < yoz = 180degree - 59degree \\  \longmapsto  < yoz = 121degree

https//brainly.in//question//9173930827

Attachments:
Answered by nehashanbhag0729
0

Answer:

in∆xyz

given

⟼<xyz=54degree

⟼<x=62degree

tofind

⟼<ozy

⟼<yoz

solution::

⟼<x+<y+<z=180degree(a.s.p)

⟼62degree+54degree+<z=180degree

⟼<z=180degree−116degree

⟼<z=64degree

so

⟼<ozy=

2

54

=27degree

similiary

⟼<ozy=

2

64

=32degree

now

∆yoz

⟼<yoz+<oyz+<ozy=180degree(a.s.p)

⟼<yoz+27degree+32degree=180degree

⟼<yoz+59degree=180degree

⟼<yoz=180degree−59degree

⟼<yoz=121degree

Similar questions