Inquadrilateral ABCD side BC is parallel to side AD, side AB is congruent to side CD. If angle A=72⁰. Then find the measure of angle B and angle D.
Answers
Answer:
Draw seg BP ⊥ side AD, A – P – D, seg CQ ⊥ side AD, A – Q – D. i. ∠A = 72° [Given] In ABCD, side BC || side AD and side AB is their transversal. [Given] ∴ ∠A + ∠B = 180° [Interior angles] ∴ 72° +∠B = 180° ∴ ∠B = 180° – 72° = 108° ii. In ∆BPA and ∆CQD, ∠BPA ≅ ∠CQD [Each angle is of measure 90°] Hypotenuse AB ≅ Hypotenuse DC [Given] seg BP ≅ seg CQ [Perpendicular distance between two parallel lines] ∴ ∆BPA ≅ ∆CQD [Hypotenuse side test] ∴ ∠BAP ≅ ∠CDQ [c. a. c. t.] ∴ ∠A = ∠D ∴ ∠D = 72° ∴ ∠B = 108°, ∠D = 72°
Answer:
i. ∠A = 72° [Given] In ABCD, side BC || side AD and side AB is their transversal. [Given]
Step-by-step explanation:
∴ ∠A + ∠B = 180° [Interior angles]
72° +∠B = 180° ∴ ∠B = 180° – 72° = 108°
ii. In ∆BPA and ∆CQD,
∠BPA ≅ ∠CQD [Each angle is of measure 90°] Hypotenuse AB ≅ Hypotenuse DC [Given]
seg BP ≅ seg CQ [Perpendicular distance between two parallel lines] ∴ ∆BPA ≅ ∆CQD [Hypotenuse side test] ∴ ∠BAP ≅ ∠CDQ [c. a. c. t.]
∴ ∠A = ∠D
∴ ∠D = 72°
∴ ∠B = 108°, ∠D = 72°