Math, asked by drashikc, 1 year ago

insert 5 geometric means between 32/9 and 81/2

Answers

Answered by komalprasad52
8

Answer:


Step-by-step


Attachments:
Answered by mysticd
2

 Let \: \pink {a} \: and \: \blue { r} \: are \\</p><p>first \:term \: and \: common \: differnce \: of \\a \: G.P

 First \:term (a) = \frac{32}{9} \:and \\Seventh \:term \: (a_{7}) = \frac{81}{2} \: (given)

 \implies a r^{6} =  \frac{81}{2}

 \boxed { \pink {Since, n^{th} \:term \:(a_{n}) = ar^{n-1} }}

 \implies \frac{32}{9} \times r^{6} = \frac{81}{2}

 \implies r^{6} = \frac{81}{2}\times \frac{9}{32}

 \implies r^{6} = \frac{3^{4}}{2}\times \frac{3^{2}}{2^{5}}

 \implies r^{6} = \frac{3^{6}}{2^{6}}

 \implies r  = \frac{3}{2}

 Now, a = \frac{32}{9} \:and \: r  = \frac{3}{2}

 Second \:term (a_{2}) \\= ar \\= \frac{32}{9} \times \frac{3}{2} \\= \frac{16}{3}

 Third \:term (a_{3}) \\= a_{2}r \\= \frac{16}{3} \times \frac{3}{2} \\= 8

 Fourth\:term (a_{4}) \\= a_{3}r \\= 8 \times \frac{3}{2} \\= 12

 Fifth\:term (a_{5}) \\= a_{4}r \\= 12 \times \frac{3}{2} \\= 18

 Fifth\:term (a_{6}) \\= a_{5}r \\= 18 \times \frac{3}{2} \\= 27

Therefore.,

\red { Required \: 5 \: geometric \:means } \\\green{ \:are \: \frac{16}{3}, 8,12,18\:and \: 27 }

•••♪

Similar questions