Math, asked by king768ns, 5 months ago

insert three rational number between 1/3 and 4/5 and arrange in descending Order. ​

Answers

Answered by ItzBeautyBabe
15

\large{\underline{\underline{\red{\tt{\purple{\leadsto } GiveN:-}}}}}

Ranbir bought a rectangular field of area 24000 square meters.

Widhth of the field is 120 m .

He wants to fence it with two rounds of wire.

\large{\underline{\underline{\red{\tt{\purple{\leadsto } To\:FinD:-}}}}}

Length of wire required to fence the field .

\Large{\underline{\underline{\red{\tt{\purple{\leadsto } AnsweR:-}}}}}

\sf \underline{\green{Figure :-}}

\setlength{\unitlength}{1 cm}\begin{picture}(12,12)\linethickness{0.4mm}\put(0,0){\line(1,0){5}}</p><p>\put(0,-0.3){$\bf A $}\put(5,-0.3){$\bf B$ } \put(0</p><p>,3.3){$\bf D $} \put(5,3.3){$\bf C $}\put(5,0){\line(0,1){3}}\put(5,3){\line(-1,0){5}}\put(0,3){\line(0,-1){3}}\put(2.5, -0.3){$\bf 200 m $} \put(2.5,3.3){$\bf 200 m $} \put(5.2,1.5){$\bf 120 m $} \put(-1, 1.5){$\bf 120 m $} \end{picture}

Given that area of the field is 24000 m² .

\sf \underline{\green{We\:know\:Area\:of\: rectangle \:as. }}

\large{\pink{\boxed{\bf Area _{rectangle}=lenght\times Breadth.  }}}

And , the Breadth here is 120 m.

\tt:\implies Area_{rec.}=(lenght)(breadth)

\tt:\implies 24000 m^2 = 120m \times l

\tt:\implies l = \dfrac{24000m^2}{120m}

\underline{\boxed{\red{\tt:\longmapsto length = 200m}}}

\rule{200}2

\sf \underline{\green{We\:know\: Perimeter\:of\: rectangle \:as. }}

\large{\blue{\boxed{\bf Perimeter _{rectangle}=2(lenght + Breadth) }}}

\tt:\implies Perimeter_{rec.}=2(l+b)

\tt:\implies Perimeter = 2(200m + 120m)

\tt:\implies Perimeter = 2\times 320m

\underline{\boxed{\red{\tt:\longmapsto Perimeter = 640m }}}

Now , since he wants to fence two rounds of wire , hence total required lenght will be

= 2 × 640 m = 1280 m .

Answered by Anonymous
5

Answer -:

 \frac{1}{3}  =  \frac{5}{15}  \: and \:  \frac{4}{5 }  \:  =  \frac{12}{15}

The rational number between

 \frac{1}{3}  \: and \:  \:  \frac{4}{5}

=

 \frac{7}{15}

The descending order is =

 \frac{ \: 4}{5}  \: and \: \:  \frac{7}{15}  \: and \:  \:  \frac{1}{3}

Similar questions