Math, asked by wwwmadelinechetri, 11 months ago

int int ( x²-1) dx x =2 to 1​

Answers

Answered by Anonymous
31

Answer:

\large\bold\red{-\frac{4}{3}}

Step-by-step explanation:

 \displaystyle \int _{2}^{1}( {x}^{2}  - 1)dx

Further simplifying,

We get,

 = \displaystyle \int _{2}^{1} {x}^{2} dx - \displaystyle \int _{2}^{1}dx \\  \\  = </p><p>\bigg[\dfrac{{x}^{3}}{3}-x\bigg]^{1} _2\\  \\  =  (\frac{ {1}^{3} }{3}  - 1) - ( \frac{ {2}^{3} }{3}  - 2) \\  \\  =  \frac{1}{3}  - 1 -  \frac{8}{3}  + 2 \\  \\  = 1 +  \frac{ 1- 8}{3}  \\  \\  = 1  -  \frac{7}{3}  \\  \\  =  \frac{3 - 7}{3}  \\  \\  =    -  \frac{4}{3}

Concepts used :-

  • \bold{\displaystyle\int{x}^{n}=\frac{{x}^{n+1}}{n+1}}
Answered by lucky997761
4

&lt;body bgcolor="black"&gt;</h2><h2>&lt;font color="white"&gt;

☆AnswEr:

 \large\bold\red{-\frac{4}{3}}

☆Step-by-step explanation:

 \displaystyle \int _{2}^{1}( {x}^{2} - 1)dx

➡Further simplifying,

➡We get,

 \begin{lgathered}= \displaystyle \int _{2}^{1} {x}^{2} dx - \displaystyle \int _{2}^{1}dx \\ \\ = \bigg[\dfrac{{x}^{3}}{3}-x\bigg]^{1} _2\\ \\ = (\frac{ {1}^{3} }{3} - 1) - ( \frac{ {2}^{3} }{3} - 2) \\ \\ = \frac{1}{3} - 1 - \frac{8}{3} + 2 \\ \\ = 1 + \frac{ 1- 8}{3} \\ \\ = 1 - \frac{7}{3} \\ \\ = \frac{3 - 7}{3} \\ \\ = - \frac{4}{3}\end{lgathered}

Similar questions