Math, asked by TraptiBadnagre, 6 months ago

`int sin^(5)x cos^(1/2)xdx`
please give me its answer only​

Answers

Answered by Anonymous
109

♣ Qᴜᴇꜱᴛɪᴏɴ :

\large\boxed{\sf{\int \sin ^5\left(x\right)\cos ^{\tfrac{1}{2}}\left(x\right)dx}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\int \sin ^5\left(x\right)\cos ^{\tfrac{1}{2}}\left(x\right)dx=-\frac{2}{3}\cos ^{\tfrac{3}{2}}\left(x\right)+\frac{4}{7}\cos ^{\tfrac{7}{2}}\left(x\right)-\frac{2}{11}\cos ^{\tfrac{11}{2}}\left(x\right)+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\int \sin ^5\left(x\right)\sqrt{\cos \left(x\right)}dx

\sin ^5\left(x\right)=\sin ^4\left(x\right)\sin \left(x\right)

=\int \sin ^4\left(x\right)\sin \left(x\right)\sqrt{\cos \left(x\right)}dx

\sin ^4\left(x\right)=\left(\sin ^2\left(x\right)\right)^2

=\int \left(\sin ^2\left(x\right)\right)^2\sin \left(x\right)\sqrt{\cos \left(x\right)}dx

\mathrm{Use\:the\:following\:identity}:\quad \sin ^2\left(x\right)=1-\cos ^2\left(x\right)

=\int \left(1-\cos ^2\left(x\right)\right)^2\sin \left(x\right)\sqrt{\cos \left(x\right)}dx

\text { Apply u - substitution: } u=\cos (x)

=\int \:-\sqrt{u}\left(1-u^2\right)^2du

\text { Expand }-\sqrt{u}\left(1-u^{2}\right)^{2}:-\sqrt{u}+2 u^{\tfrac{5}{2}}-u^{\tfrac{9}{2}}

=\int \:-\sqrt{u}+2u^{\tfrac{5}{2}}-u^{\tfrac{9}{2}}du

\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx

=-\int \sqrt{u}du+\int \:2u^{\tfrac{5}{2}}du-\int \:u^{\tfrac{9}{2}}du

\begin{array}{l}\int \sqrt{u} d u=\dfrac{2}{3} u^{\tfrac{3}{2}} \\\\\int 2 u^{\tfrac{5}{2}} d u=\dfrac{4}{7} u^{\tfrac{7}{2}} \\\\\int u^{\tfrac{9}{2}} d u=\dfrac{2}{11} u^{t\frac{11}{2}}\end{array}

=-d\frac{2}{3}u^{\tfrac{3}{2}}+\dfrac{4}{7}u^{\tfrac{7}{2}}-\dfrac{2}{11}u^{\tfrac{11}{2}}

\mathrm{Substitute\:back}\:u=\cos \left(x\right)

=-\dfrac{2}{3}\cos ^{\tfrac{3}{2}}\left(x\right)+\dfrac{4}{7}\cos ^{\tfrac{7}{2}}\left(x\right)-\dfrac{2}{11}\cos ^{\tfrac{11}{2}}\left(x\right)

\mathrm{Add\:a\:constant\:to\:the\:solution}

\boxed{\sf{=-\frac{2}{3}\cos ^{\tfrac{3}{2}}\left(x\right)+\frac{4}{7}\cos ^{\tfrac{7}{2}}\left(x\right)-\frac{2}{11}\cos ^{\tfrac{11}{2}}\left(x\right)+C}}

Similar questions