Math, asked by rishichaurasia89, 1 month ago

`int x sec^(2)(1-x^(2))dx`​

Answers

Answered by TrustedAnswerer19
7

{ \boxed{ \begin{array}{cc}  \bf \:  \to \: let \\  \\  \rm \: I =  \displaystyle  \int \:  \rm \: x \:  {sec}^{2} (1 -  {x}^{2} ) \: dx \\  \\  = \displaystyle  \int \:  \rm \:x \:  {sec}^{2}  \{ - ( {x}^{2} - 1)  \} \: dx \\  \\  = \displaystyle  \int \:  \rm \:x \:  {sec}^{2}  ( {x}^{2} - 1) \: dx  \\ \\  \:  \:  \:  \:  \red{ \{ \because \: sec ( - \theta ) = sec \theta \}} \\  \\  \pink{ \boxed{ \begin{array}{cc}  \bf \:  substitute \:   \\  \rm \: \: u =  {x}^{2}  - 1 \\  \\  \implies \rm \: \frac{du}{dx} =  \frac{d}{dx} ( {x}^{2}   - 1) = 2x \\   \\ \implies \rm \:dx = \frac{1}{2x}  .du\end{array}}} \\  \\  = \frac{1}{2 \:  \cancel x}  \displaystyle  \int \:  \rm \: \cancel   x \:  {sec}^{2}  u \: \:  du  \\  \\  =  \frac{1}{2} \displaystyle  \int \:  \rm \: {sec}^{2}u \:  \: du \\  \\ \pink{ \boxed{ \begin{array}{cc}  \sf \: we \: know \: that :   \\  \\ \displaystyle  \int \:  \rm \: {sec}^{2} x \: dx = tan \: x + c\end{array}}}  \\  \\  \sf \: apply \: this \: formula \\  \\   =  \rm \:  \frac{1}{2}  \times tan \: u + c \\  \\  \rm =  \frac{1}{2} \times tan( {x}^{2} - 1) + c \\  \\ \red{  \{ \because \:  \rm \: u =  {x}^{2}   - 1 \} } \\  \\  \\ \end{array}}}

 \green{ \small{ \rm \therefore \: \displaystyle  \int \:  \rm \:x \:  {sec}^{2} (1 -  {x}^{2} ) \: dx =  \frac{1}{2}  \times tan( {x}^{2}  - 1) + c}}

Similar questions