Math, asked by mathsbskrishnan002, 8 months ago

integaral of log (1+x)​

Answers

Answered by medhini15
0

Answer:

thank you for the free points mate

Answered by mathdude500
1

\large\underline\blue{\bold{Given\:Question - }}

\tt \longmapsto\: \int \:  log(1 + x)dx

\begin{gathered}\Large{\bold{\red{\underline{Formula \:  Used \::}}}}  \end{gathered}

(1). \:  \boxed{ \green{ \bf \:  \int1 \: dx \:  = x \:  +  \: c}}

(2). \:\boxed{ \green{ \bf \:  \int\dfrac{1}{x}dx =  log(x)  + c }}

(3). \:\boxed{ \green{ \bf \: \dfrac{d}{dx} log(x) =   \dfrac{1}{x} }}

Concept Used :-

Integration by Parts

  • Integration by Parts is a special method of integration that is often useful when two functions are multiplied together, but is also helpful in other ways.

✏️See the rule:

  • ∫u v dx = u∫v dx −∫u' (∫v dx) dx

  • u is the function u(x)

  • v is the function v(x)

  • u' is the derivative of the function u(x)

For integration by parts , the ILATE rule is used to choose u and v.

where,

  • I - Inverse trigonometric functions

  • L -Logarithmic functions

  • A - Arithmetic and Algebraic functions

  • T - Trigonometric functions

  • E- Exponential functions

The alphabet which comes first is choosen as u and other as v.

Let's do it now!!

\large\underline\purple{\bold{Solution :-  }}

\tt \longmapsto\: \int \:  log(1 + x)dx

\tt \longmapsto\: \int \: 1. log(1 + x)dx

Here,

  • u = log(1 + x)

  • v = 1

So,

  • By using Integration by Parts, we get

\tt \longmapsto\: log(1 + x) \int1dx -  \int \{\dfrac{d}{dx} log(1 + x) \int1dx  \}dx

\tt \longmapsto\:x log(1 + x)  -  \int\dfrac{1}{1 + x}  \times x \: dx

\tt \longmapsto\:x log(1 + x)  -  \int\dfrac{x}{1 + x} \: dx

\tt \longmapsto\:x log(1 + x)  -  \int\dfrac{x + 1 - 1}{1 + x} \: dx

\tt \longmapsto\:x log(1 + x)  -  \int(\dfrac{1 + x}{1 + x} - \dfrac{1}{x + 1}  )\: dx

\tt \longmapsto\:x log(1 + x)  -  \int(1 - \dfrac{1}{1 + x})\: dx

\tt \longmapsto\:x log(1 + x)  - x +  log(1 + x)  + c

\tt \longmapsto\:(x  + 1) \: log(1 + x)  - x  + c

Similar questions