Math, asked by ragimaly1, 1 month ago

.“Integers does not satisfy the associative property with respect to subtraction”. Justifyit.​

Answers

Answered by anjanabhardwaj2007
4

Answer:

9

Step-by-step explanation:

Required Numbers are (11,12)

\begin{gathered}Or\\ < /p > < p > (\frac{-12}{23},\frac{11}{23})\end{gathered}Or</p><p>(23−12,2311)

Step-by-step explanation:

\begin{gathered} Let\:x \:and \:(x+1) \:are\\ < /p > < p > two \: consecutive\: numbers \end{gathered}Letxand(x+1)are</p><p>twoconsecutivenumbers

Sum\:of\: the\: reciprocals=\frac{23}{132}Sumofthereciprocals=13223

\implies \frac{1}{x}+\frac{1}{x+1}=\frac{23}{132}⟹x1+x+11=13223

\implies \frac{x+1+x}{x(x+1)}=\frac{23}{132}⟹x(x+1)x+1+x=13223

\implies \frac{2x+1}{x^{2}+x}=\frac{23}{132}⟹x2+x2x+1=13223

\implies 132(2x+1)=23(x^{2}+x)⟹132(2x+1)=23(x2+x)

\implies 264x+132=23x^{2}+23x⟹264x+132=23x2+23x

\implies 0=-264x-132+23x^{2}+23x⟹0=−264x−132+23x2+23x

\implies 23x^{2}-241x-132=0⟹23x2−241x−132=0

/* Splitting the middle term, we get

\implies 23x^{2}-263x+12x-132=0⟹23x2−263x+12x−132=0

\implies 23x(x-11)+12(x-11)=0⟹23x(x−11)+12(x−11)=0

\implies (x-11)(23x+12)=0⟹(x−11)(23x+12)=0

\implies x-11=0\:Or\:23x+12=0⟹x−11=0Or23x+12=0

\implies x=11\:Or\:23x=12⟹x=11Or23x=12

\implies x=11\:Or\:x =\frac{-12}{23}⟹x=11Orx=23−12

Therefore,

Case 1:

If x = 11, x+1 = 11+1 = 12

case 2:

\begin{gathered}If \:x =\frac{-12}{23}\\ < /p > < p > x+1=\frac{-12}{23}+1\\=\frac{-12+23}{23}\\=\frac{11}{23}\end{gathered}Ifx=23−12</p><p>x+1=23−12+1=23−12+23=2311

•••♪

Similar questions