Math, asked by syedyunus326pany96, 1 year ago

integral 0to1 x/[1+√(1+x*2)] dx​

Answers

Answered by KaushikGupta
0

I hope you are satisfied

and please follow me

Attachments:

syedyunus326pany96: 2(√2+1)/3 is the answer
clockkeeper: no! kaushikgupta is right
Answered by clockkeeper
0

before we start i wanna tell u that for me

f  =  >  \: integral

therefore,

f \frac{x.dx}{1 +  \sqrt{1 +  {x}^{2} } }  \\ put \: 1 +  {x }^{2}  =  {t}^{2}  \\ therefore \: x.dx = t.dt \\ so \\ f \frac{t.dt}{1 + t}  = fdt \:  - f \frac{dt}{1 + t}  \\  = t -  log(1 + t)  + c \\ on \: putting \: value \: of \: t \: we \: get \\  = \frac{1}{0}  ( \sqrt{1 +  {x}^{2} }  -  log(1 +  \sqrt{1 +  {x}^{2} } )   \\ =  (( \sqrt{1 +  {1}^{2} }  -  log(1 +  \sqrt{1 +  {1}^{2} } ) ) -  (\sqrt{1 +  {0}^{2} } -  log(1 + \sqrt{1 +  {0}^{2} }))) \\  = ( \sqrt{2 }   -  log(1 +  \sqrt{2} ) ) - (1 -  log( \sqrt{2} ) ) \\  =  \sqrt{2}  - 1 +  log( \frac{ \sqrt{2} }{1 +  \sqrt{2} } )

Similar questions