Math, asked by kajal03, 8 months ago

Integral 2 tanxsec^2x /tan^2x+ 3tanx +2​

Answers

Answered by senboni123456
0

Step-by-step explanation:

i =  \int \frac{2 \tan(x)  \sec^{2} (x) }{ \tan^{2} (x) + 3 \tan(x)  + 2 }  dx

 let \:  \:  \tan(x)  = t  =  >  \sec^{2} (x).dx = dt

 i=  \int \frac{2t}{ {t}^{2}  + 3t + 2}dt

 i=  \int \frac{2t + 3 - 3}{ {t}^{2}  + 3t + 2} dt

 i=  \int \frac{2t + 3}{ {t}^{2} + 3t + 2 } dt  -   \int \frac{3}{ {t}^{2}  + 3t + 2} dt

Let i=a-b, where,

a =  \int \frac{2t + 3}{ {t}^{2} + 3t + 2 } dt \:  \: and \:  \: b =   \int \frac{3}{ {t}^{2}  + 3t + 2} dt

Solving a and b:

a =  \int \frac{2t + 3}{ {t}^{2}  + 3t + 2} dt

let \:  \:  {t}^{2}  + 3t + 2 = u =  > (2t + 3)dt = du

 =  > a =  \int \frac{du}{u}

 =  > a =  ln \: |u|  + c=  ln  \:  | {t}^{2}  + 3t + 2| + c

Now,

b = 3  \int \frac{dt}{ {t}^{2}  + 3t + 2}

 =  > b = 3 \int \frac{dt}{ {t}^{2} + 2. \frac{3}{2} t  + { (\frac{3}{2}) }^{2}  -  { (\frac{3}{2}) }^{2}  + 2 }

 =  > b =  \int \frac{dt}{ {(t +  \frac{3}{2} )}^{2}  + (2 -  \frac{9}{4} ) }

 =  > b =  \int \frac{dt}{ {(t +  \frac{3}{2}) }^{2}   -  { (\frac{1}{2} )}^{2} }

 =  > b =  \frac{1}{2 \times  \frac{1}{2} }  ln \:  | \frac{ \frac{1}{2}  + t +  \frac{3}{2} }{ \frac{1}{2}   -  t  -  \frac{3}{2} } |  + c

 =  > b =  ln \:  | \frac{t + 2}{ - t - 1} | + c

 =  > b =  ln \: | \frac{t + 2}{t + 1} | + c

i =  ln \: | {t}^{2}  + 3t + 2|  +  ln  \: | \frac{t + 2}{t + 1} |   + c

i =  ln \:  |(t + 2)(t  + 1) \frac{(t + 2)}{(t + 1)}  |

i =  ln  \: | {(t + 2)}^{2} |  + c

i = 2 . ln  \: | \tan(x)  + 2|  + c

Similar questions