Math, asked by hamnahameed00, 6 months ago

integral cosh (2x+1)​

Answers

Answered by darshanradha3
2

Answer:

\int\limits {cos(2x+1)} \, dx = \frac{1}{2} sin (2x+1)

Step-by-step explanation:

integral cos (2x+1)​

We will do this by substitution method

\int\limits {cos(2x+1)} \, dx -------- Equation 1

Let us substitute u = 2x + 1 ----------- Equation 2

now differentiate both side with respect to x

\frac{d(u)}{dx} = \frac{d(2x+1)}{dx}

\frac{du}{dx} = \frac{d(2x)}{dx} + \frac{d(1)}{dx}

    = 2 + 0                         {differentiation of any constants like 1,2,3,4 .... is 0}

\frac{du}{dx} = 2

dx =  \frac{du}{2} ----------- Equation 2

Now substituting equation 2 and 3 in equation 1 we get;

\int\limits {cos(2x+1)} \, dx  = \int\limits{cos (u)} \, \frac{du}{2}         {Now it is simple right}

                           = \frac{1}{2} \int\limits {cosu} \, du       {\frac{1}{2} is constant so we took it out}

                            = \frac{1}{2} sinu              {integration of cos x is sin x}

Now substitute the value of u from equation 1

\int\limits {cos(2x+1)} \, dx = \frac{1}{2} sin (2x+1)

                                              HOPE YOU UNDERSTOOD

                                                              THANK YOU

Similar questions