Math, asked by shreyans24, 10 months ago

integral of 1/logx
pls answer fast​

Answers

Answered by kailashmeena123rm
81

\large \: \red{\mathcal{ANSWER}} \\  \:

\small{\Longrightarrow \: I \:  = \int \:   \frac{1}{log_{a}(x)}   \: dx  }\:  \: \small\\  \Longrightarrow \: let \:   \:  \:  \:  \small \: log(x)  = t \\ \Longrightarrow \: then \: \:  \:  \:  \:  x =  {e}^{t}  \\\Longrightarrow \:  or \: dx \:  =  {e}^{t} \: dt

  \small \: \Longrightarrow \: I \:  =  \:  \int \frac{ {e}^{t} }{t} dt \\  \small\Longrightarrow I \:  =  \:  \int \frac{1 +  \frac{t}{1! } +  \frac{ {t}^{2} }{2!}  +  ...............  }{t}

  \small \: \Longrightarrow \: I \:  =  \int \frac{1}{t}  +  \frac{1}{1}  +  \frac{t}{2! }  + .........dt \\

 \blue{\small \: \Longrightarrow \: I \:  =  \:  log(t)  + t +  \frac{ {t}^{2} }{4}  +  \frac{ {t}^{3} }{2 \times 3! }  + c........}

where c is constant of integration

  \mathrm{  \small\Longrightarrow  \: series \: expansion \: of \: } { {e}^{t} }\\ \small\Longrightarrow  \boxed{ {e}^{t} \:  =  \:   1 +  \frac{t}{1! } +  \frac{ {t}^{2} }{2!}  +  \frac{ {t}^{3} }{3!}  ...............   \: }

Similar questions
Math, 1 year ago