integral of 1+tanxtan[x+a]
Answers
Answered by
1
Hence it is the answer
Attachments:
Answered by
0
Answer:
cot θ ln cos xcos x+θ+C+cot θ ln cosθ
Step-by-step explanation:
Let I=∫1+tan x tan x+θdx
= ∫1+tanxtan x+tan θ1-tan x tan θdx
= ∫1+tan2 x1-tan x tan θdx
= ∫sec2x dx1-tan x tan θ
Putting tanx=t
⇒ sec2x=dtdx
⇒dx=dtsec2x
∴ I= ∫11-t tanθdt
= -1tan θ ln 1-t tan θ+C
∵ ∫1ax+bdx=1aln ax+b+C
= -cot θ ln 1-tanx tan θ+C
= cot θ ln 11-tan x tan θ+C
= cot θ ln cosx cosθcos x cos θ-sin x sin θ+C
= cot θ ln cos xcos x+θ+C'
Let C'=C+cot θ ln cosθ
Similar questions