Math, asked by Aryatyagi1610, 10 months ago

Integral of 2cos^2 (2x) sin 4x dx

Answers

Answered by SrijanShrivastava
0

To Find

∫(2 {cos }^{2}(2x).sin(4x)) \: dx

.

Solution

= 2∫ {cos}^{2} (2x).sin(4x)dx

= 2∫ {cos}^{2} (2x).2sin(2x)cos(2x)dx

= 4∫ {cos}^{3} (2x).sin(2x)dx

NOW Let; cos(2x) = t

(-2)sin(2x)dx = dt

and; sin(2x)dx = dt ÷ (-2)

 = -  \frac{4}{2} ∫t ^{3} dt

 = - 2 \frac{ {t}^{4} }{4}

 = -  \frac{ {t}^{3} }{2}

 = -  \frac{cos {}^{4} (2x)}{2}  + C ; C ∈ ℝ

Similar questions