Math, asked by Manoranjane2710, 5 hours ago

integral of (2x^2+4x+1)^2​

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int(2 {x}^{2}  + 4x + 1)^{2} dx \\

 =  \int \{(2x + 1)^{2} \}^{2} dx \\

 =  \int (2x + 1)^{4}dx \\

 =  \int (2x)^{4}   + (2x)^{3} +  {(2x)}^{2}  +( 2x) + 1 dx \\

 =  \int (2x)^{4} dx  +  \int(2x)^{3} dx+   \int{(2x)}^{2}dx  + \int( 2x) dx+  \int dx \\

 =  16\int (x)^{4} dx  +  8\int \: (x)^{3} dx+   4\int{(x)}^{2}dx  + 2\int(x) dx+  \int dx \\

 =  16\frac{ x^{5}}{5}  +  8\frac{ x^{4}}{4} +   4\frac{{x}^{3}}{3} + 2\frac{x^{2} }{2} + x  + C\\

 =  \frac{16 }{5}x^{5} +  \frac{ 8}{4}x^{4}+   \frac{4}{3}{x}^{3} +\frac{2}{2}x^{2}+ x  + C\\

 =  \frac{16 }{5}x^{5} + 2x^{4}+   \frac{4}{3}{x}^{3}  + x^{2}+ x  + C\\

Similar questions