Math, asked by bestoption2, 1 year ago

Integral of 3cosec^2 x - 5x + sinx

Answers

Answered by BrainlyWarrior
38
\textbf{Hey there}!!

\textbf{Solution}:

= \int{\bold{( 3 cosec^{2}x - 5x + sinx)}}}.dx


= 3 \int{cosec^{2}}xdx) - 5 \int{xdx} + \int{sinxdx}


= 3 (-cotx) - \frac{5}{2} x^{2} + (-cosx) + c


= -3cotx - \frac{5}{2}  x^{2} - cosx + c


#Be Brainly.


@karangrover@2.
Answered by Anonymous
6

 \bf \huge{ \underline{ \underline{ \blue{answer \:  :  - }}}}

 \bf \huge \rightarrow \:  \int \: (3 {cosec}^{2} x - 5x + sin \: x).dx \\  \\  \bf \huge \rightarrow \: 3 \int \:  {cosec}^{2} xdx - 5 \int \: xdx \:  +  \int \: sin \: xdx \\  \\  \bf \huge \rightarrow \: 3( - cot \: x) -  \frac{5}{2}  {x}^{2}  + ( - cos \: x)c \\  \\  \bf \huge \rightarrow \:  - 3 \: cot \: x \:  -  \frac{5}{2}  {x}^{2}  -  \: cos \: x \:  + c

Indian Army ❣️

Similar questions