integral of (cosx - cos2x)/(1-cosx)
Attachments:
Answers
Answered by
1
first use tan property after that rationalize it and use identity u find the answer
tanmay29:
no need dude just factorise nr and then dr will cancel out
Answered by
0
The answer is
=
2
sin
x
+
x
+
C
Explanation:
We need
cos
2
x
=
2
cos
2
x
−
1
Therefore,
∫
(
cos
x
−
cos
2
x
)
d
x
1
−
cos
x
=
∫
(
cos
2
x
−
cos
x
)
d
x
cos
x
−
1
=
∫
(
2
cos
2
x
−
1
−
cos
x
)
d
x
cos
x
−
1
=
∫
(
2
cos
x
+
1
)
(
cos
x
−
1
)
d
x
cos
x
−
1
=
∫
(
2
cos
x
+
1
)
d
x
=
2
sin
x
+
x
+
C
Similar questions