Math, asked by spoorthithiruma, 1 year ago

integral of cosx/cos3x

Answers

Answered by QGP
4
Hey There,
Here we are going to use the following concept:

 \cos 3x = 4\cos^3x-3\cos x \\ \\ \implies \cos 3x = \cos x(4\cos^2x-3) \\ \\ \implies \frac{\cos x}{\cos 3x} = \frac{1}{4\cos^2x-3}

Now, our question reduces to:
\int \frac{\cos x}{\cos 3x}dx \\ \\ \\ = \int \frac{1}{4\cos^2x-3}dx \\ \\ \\ = \int \frac{1}{\frac{4}{\sec^2x}-3}dx \\ \\ \\ = \int \frac{\sec^2x}{4-3\sec^2x}dx \\ \\ \\ = \int \frac{\sec^2x}{4-3(1+\tan^2x)}dx \\ \\ \\ = \int \frac{\sec^2x}{4-3-3\tan^2x}dx \\ \\ \\ = \int \frac{\sec^2x}{1-3\tan^2x}dx \\ \\ \\ \\ Let \, \, \tan x = t \\ \\ \implies \sec^2x dx = dt \\ \\ \\ \\ Now \\ \\ \int \frac{\sec^2x}{1-3\tan^2x}dx \\ \\ \\ = \int \frac{1}{1-3t^2}dt \\ \\ \\ = \frac{1}{3} \int \frac{dt}{\frac{1}{3}-t^2} \\ \\ \\ = \frac{1}{3} \int \frac{dt}{\left(\frac{1}{\sqrt{3}}\right)^2-t^2} \\ \\ \\ \\ \textrm{Now we use the identity: } \\ \\ \\ \\ \int \frac{dx}{a^2-x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| +c \\ \\ \\ \\ \textrm{So we have } \\ \\ \\ \\ \frac{1}{3} \int \frac{dt}{\left(\frac{1}{\sqrt{3}}\right)^2-t^2} \\ \\ \\ =  \frac{1}{3} \times \frac{1}{2\frac{1}{\sqrt{3}}} \ln \left| \frac{\frac{1}{\sqrt{3}}+t}{\frac{1}{\sqrt{3}}-t}\right|+c \\ \\ \\ = \frac{1}{2\sqrt{3}} \ln \left| \frac{1+\sqrt{3}t}{1-\sqrt{3}t} \right| +c \\ \\ \\ = \frac{1}{2\sqrt{3}} \ln \left| \frac{1+\sqrt{3}\tan x}{1-\sqrt{3}\tan x} \right| + c



The above looking Code is correct. If you are reading this answer on the App, them you should be able to read it. But Brainly does not render it on website of a Mobile or a Computer.

So, for those of you reading this on website, I have attached an image of the rendered version.



Hope it helps
Purva
Brainly Community






Attachments:

QGP: There seems to be some error in my code. Let me edit it
QGP: Done editing. Now the answer is perfect.
Similar questions