Math, asked by rheakanji, 2 days ago

integral of e^(1-1/x)* (1+1/x^2)​

Attachments:

Answers

Answered by mathdude500
5

Appropriate Question :- Evaluate

\rm \: \displaystyle\int\rm  {e}^{ \: \bigg(x - \dfrac{1}{x}  \bigg) } \:  \:  \bigg(1 + \dfrac{1}{ {x}^{2} } \bigg )\: dx \\

\large\underline{\sf{Solution-}}

Given integral is

\rm \: \displaystyle\int\rm  {e}^{ \: \bigg(x - \dfrac{1}{x}  \bigg) } \:  \:  \bigg(1 + \dfrac{1}{ {x}^{2} } \bigg )\: dx \\

To solve this integral, we use method of Substitution.

So, substitute

\rm \: x -  \dfrac{1}{x}  = y \\

can be rewritten as

\rm \: x -   {x}^{ - 1}   = y \\

On differentiating both sides w. r. t. x, we get

\rm \: 1 + {x}^{ - 1 - 1}   =  \dfrac{dy}{dx} \\

\rm \: \bigg(1 + \dfrac{1}{ {x}^{2} }  \bigg)dx \:  =  \: dy \\

So, on substituting all these values in above integral, we get

\rm \:  =  \: \displaystyle\int\rm  {e}^{y}  \: dy \\

\rm \:  =  \:  {e}^{y}  + c \\

\rm \:  =  \: {e}^{ \: \bigg(x - \dfrac{1}{x}  \bigg) } \:  +  \: c \\

Hence,

\boxed{ \rm{\displaystyle\int\rm  {e}^{ \: \bigg(x - \dfrac{1}{x}  \bigg) } \:  \:  \bigg(1 + \dfrac{1}{ {x}^{2} } \bigg )\: dx  = {e}^{ \: \bigg(x - \dfrac{1}{x}  \bigg) } + c \:}} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions