integral of (sec x-1)^1/2
Answers
Answered by
0
Let I=∫sec(x)−1−−−−−−−−√dxI=∫sec(x)−1dx
=∫sec2(x)−1√sec(x)+1√dx=∫sec2(x)−1sec(x)+1dx(Multiplied numerator and denominator by sec(x)+1−−−−−−−−√sec(x)+1)
=∫tan(x)sec(x)+1√dx=∫tan(x)sec(x)+1dx
Let y=sec(x)+1−−−−−−−−√y=sec(x)+1
⟹y2=sec(x)+1⟹y2=sec(x)+1
⟹2ydy=sec(x)tan(x)dx⟹2ydy=sec(x)tan(x)dx
⟹2yy2−1dy=tan(x)dx⟹2yy2−1dy=tan(x)dx
Substituting the assumed values into I, we get,
I=∫2yy(y2−1)dyI=∫2yy(y2−1)dy
=∫2y2−1dy=∫2y2−1dy
Applying the partial decomposition technique, we have,
I=∫1y−1dy−∫1y+1dyI=∫1y−1dy−∫1y+1dy
=ln(y−1)−ln(y+1)=ln(y−1)−ln(y+1)
=ln(y−1y+1)=ln(y−1y+1)
Substituting yy in II, we get,
I=ln(sec(x)+1√−1sec(x)+1√+1)+C
=∫sec2(x)−1√sec(x)+1√dx=∫sec2(x)−1sec(x)+1dx(Multiplied numerator and denominator by sec(x)+1−−−−−−−−√sec(x)+1)
=∫tan(x)sec(x)+1√dx=∫tan(x)sec(x)+1dx
Let y=sec(x)+1−−−−−−−−√y=sec(x)+1
⟹y2=sec(x)+1⟹y2=sec(x)+1
⟹2ydy=sec(x)tan(x)dx⟹2ydy=sec(x)tan(x)dx
⟹2yy2−1dy=tan(x)dx⟹2yy2−1dy=tan(x)dx
Substituting the assumed values into I, we get,
I=∫2yy(y2−1)dyI=∫2yy(y2−1)dy
=∫2y2−1dy=∫2y2−1dy
Applying the partial decomposition technique, we have,
I=∫1y−1dy−∫1y+1dyI=∫1y−1dy−∫1y+1dy
=ln(y−1)−ln(y+1)=ln(y−1)−ln(y+1)
=ln(y−1y+1)=ln(y−1y+1)
Substituting yy in II, we get,
I=ln(sec(x)+1√−1sec(x)+1√+1)+C
Similar questions